

Softing Industrial Automation GmbH
Richard-Reitzner-Allee 6
D-85540 Haar
Tel.: (++49) 89/4 56 56-0
Fax.: (++49) 89/4 56 56-399
http://www.softing.com

Softing CANopen Client API

User Manual

Version 5.17.1
August 2012

http://www.softing.com/

© Copyright Softing Industrial Automation GmbH
No part of these instructions may be reproduced or processed, copied or distributed
iin any form whatsoever without prior written permission by Softing Industrial Automation GmbH. Any
violations will lead to compensation claims.
All rights are reserved, particularly with regard to patent issue or GM registration.
The producer reserves the right to make changes to the scope of supply as well as
to technical data, even without prior notice.
Careful attention was given to the quality and functional integrity in designing,
manufacturing and testing the system. However, no liability can be assumed for
potential errors that might exist or for their effects. In particular, we cannot assume
liability in terms of suitability of the system for a particular application. Should you
find errors, please inform your distributor of the nature of the errors and the
circumstances under which they occur. We will be responsive to all reasonable ideas
and will follow up on them, taking measures to improve the product, if necessary.

Contents 1

Contents

Contents ...1

Preface..8

About this manual...8

1 About the CANopen Client API9

1.1 Scope of Application ...9

1.2 Supported Systems..10

2 Getting Started ...11

2.1 System Requirements ...11

2.2 Quick Start ..11

2.3 Installation Test...12
2.3.1 Uninstall Support ..13

2.4 Hardware Driver Notes ..14
2.4.1 Driver Files ...14
2.4.2 Compatibility Note..14

3 About CANopen [CiA 301]...15

3.1 Common...15
3.1.1 CANopen Network ...15
3.1.2 CANopen Device ..17
3.1.3 CANopen Communication Objects and Services20

2 Contents

3.2 Physical Layer ...22

3.3 Process Data Object (PDO)..24
3.3.1 PDO Types..24
3.3.2 PDO Services..26

3.4 Service Data Object (SDO) ..28
3.4.1 SDO Download...28
3.4.2 SDO Upload..30
3.4.3 Abort SDO Transfer..30
3.4.4 SDO Block Transfer ...32

3.5 Synchronization (SYNC Object)..33

3.6 Network Management (NMT) ...34
3.6.1 Module Control Services ..34
3.6.2 Error Control Services ..35
3.6.3 Boot-up service ...37
3.6.4 Emergency Object (EMCY)..37

3.7 Object Dictionary..38

4 CANopen Client API...39

4.1 Common...39
4.1.1 CANopen Client API Concept ..39
4.1.2 Driver Concept..40
4.1.3 Main Programming Sequence...41

4.2 Initialization ..42
4.2.1 Initialization of the CAN Channel ..42
4.2.2 Hardware and Software Version Information44
4.2.3 Start-up and Shutdown of the CANopen Client............................45

4.3 SDO Transfer ..49
4.3.1 Common..49
4.3.2 SDO Download...50
4.3.3 SDO Upload..51
4.3.4 Abort SDO Transfer..54

Contents 3

4.4 PDO Transfer..55
4.4.1 PDO Buffer Administration ..55
4.4.2 PDO Services..57

4.5 Synchronization ..60

4.6 NMT Services ..62
4.6.1 Node Manager Configuration ...62
4.6.2 Node Guarding / Heartbeat Supervision63
4.6.3 Module State Control ..65
4.6.4 EMCY Object ...66
4.6.5 Boot-Up Service..66

4.7 API Events and Event-FIFO..67
4.7.1 Reading the Event-FIFO ...67
4.7.2 Event Types and Data ...67

4.8 Client Object Dictionary ..73

5 Programming Notes...74

5.1 API Function Linking...74
5.1.1 Calling Convention and Data Types ...74

Event Processing ...75
5.1.2 Interrupt Events...75
5.1.3 WIN32 Interrupt Programming...75

6 Function Reference ...77

6.1 CMA_AbortSDOTransmission..77

6.2 CMA_AddNode...79

6.3 CMA_ChangeState ...83

6.4 CMA_CloseCard...86

4 Contents

6.5 CMA_ConfigCANChannel ..88

6.6 CMA_ConfigSyncMan ...92

6.7 CMA_GetVersion ...95

6.8 CMA_InitializeCard...97

6.9 CMA_InitBlockDownload..101

6.10 CMA_InitBlockUpload...104

6.11 CMA_InitDownload ...107

6.12 CMA_InitUpload ..110

6.13 CMA_InitNodeMan..113

6.14 CMA_InitSDOMan ..115

6.15 CMA_InstallPDO_E...118

6.16 CMA_ReadData..123

6.17 CMA_ReadEvent ..126

6.18 CMA_ReadPDO..129

6.19 CMA_RemoveNode ..131

6.20 CMA_RemovePDO...133

6.21 CMA_RequestGuarding...135

6.22 CMA_SendRemotePDO...138

6.23 CMA_SetIntEvent ..140

6.24 CMA_Shutdown..142

Contents 5

6.25 CMA_Startup..144

6.26 CMA_WritePDO ..147

6.27 CMA_WritePDOBit ...150

Appendix A...153

Glossary ...156

Index ...157

6 Contents

List of figures
Figure 2-1: Installation test screen 13
Figure 3-1: CANopen reference layer model 15
Figure 3-2: CANopen device model 17
Figure 3-3: CANopen state machine 18
Figure 3-4: CANopen network 22
Figure 3-5: PDO transmission service protocols 27
Figure 3-6: SDO download services 29
Figure 3-7: SDO upload services 31
Figure 3-8: Synchronous communication 33
Figure 3-9: Node/Life guarding protocol 35
Figure 3-10: Heartbeat protocol 37
Figure 4-1: Main programming flow chart 41
Figure 4-2: Initialize interface flow chart 43
Figure 4-3: CANopen Client start-up/shutdown flowchart 47
Figure 4-4: SDO transfer timeout 49
Figure 4-5: SDO download flow chart 51
Figure 4-6: SDO upload flow chart 53

List of tables

Table 2-1: Installation tests of InstTest.exe 12
Table 3-1: CANopen device states 19
Table 3-2: Communication objects and services 20
Table 3-3: Active communication objects 21

Contents 7

Table 3-4: CANopen bit rates 23
Table 3-5: PDO transmission types 26
Table 3-6: Module Control Services 34
Table 4-1: CANopen Client initialization parameters 45
Table 4-2: CANopen Client initialization functions 45
Table 4-3: PDO transmission types and instants 57
Table 4-4: Guarding errors 64
Table 4-5: Event types 69
Table 4-6: Event data 70
Table 4-7: Error event types and data 71
Table 4-8: Object Dictionary entries of the CANopen Client 73
Table 6-1: PDO transmission type 119
Table A-1: SDO error class and code 153
Table A-2: Additional SDO error code 154

8 Preface

Preface

About this manual

This user manual is written for users operating the CANopen
Client API on Softings CAN interfaces within the operating
systems Windows 7, Vista and XP.

It includes the following topics:

• Chapter 1 gives a common introduction about the product
and its application.

• In Chapter 2 the installation is described. Helpful notes
support the uncomplicated installation. A ‘Quick start’ is
included.

• Chapter 3 provides a short introduction into the CANopen
network specified in [CiA 301]. Communication objects and
protocols are described briefly.

• Chapter 4 describes how to realize the CANopen
functionality of Chapter 3 using the CANopen Client API.
Application notes, programming sequences and example
links are included.

• Chapter 5 provides some helpful programming hints
regarding API linking and interrupt.

• The API function reference in alphabetic order can be
found in Chapter 6.

In addition to this user manual, always observe the notes
contained in file readme.txt. This file resides on the disk along
with the setup program. The notes contain up-to-date
information concerning the present software version.

The hardware description including pin-out configuration and
installation is attached to the respective hardware.

About the CANopen Client API 9

1 About the CANopen Client API

1.1 Scope of Application

Nowadays PCs become more and more important as standard
components for visualization and controlling of automated
machinery. On the other hand CANopen has established a
widespread standard in the fieldbus world due to its flexibility
and scalability. Fieldbus interfaces are required to connect the
PC with the distributed field devices. The rating of the interface
regarding data throughput and responsiveness are most
important for the reliability and availability of the automated
system.

Meeting these requirements the CANopen Client API merges
the high-performance of Softings CAN interfaces with the
CANopen Master functionality as specified in the CANopen
Specification [CiA 301 V4.0.2].

The CANopen Client API is designed to fulfill the customer’s
requirements regarding, responsiveness, data throughput and
easy implementation provided by following main features:

CANopen Stack
- The CANopen Stack runs as a 32bit Windows DLL on
 Softing’s speed-optimized CAN Layer2 API.

Asynchronous User Interface
- Some application commands are executed
 asynchronously without immediate result information.
- CANopen events to the application are buffered in a
 FIFO (255 entries) overcoming short breaks without
 losing data or information.
- Hardware interrupt triggered event evaluation.

Implementation
- 32bit Windows DLL for Windows 7, Vista and XP for 32bit
 applications. These 32bit applications may as well run on
 64bit PCs as the CANopen Client API DLL is able to
 connect to Softing’s 64bit CAN driver.

10 About the CANopen Client API

The CANopen Client API is compatible with the CANopen
specification [CiA 301 V 4.0.2]. It comprises the following
CANopen specific features:

SDO Manager
- Expedited and segmented down and upload

PDO Manager
- Buffering of up to 512 TPDOs and 512 RPDOs

Node Manager (NMT Master)
- Remote state change of the slaves
- Emergency (EMCY) support
- Error Control (Heartbeat, Node Guarding)
- Boot-up message at start-up

SYNC Manager
- Producing and consuming SYNC messages

1.2 Supported Systems

The CANopen Client API functions are integrated in a 32bit
DLL according to Standard C calling convention. Thus, all
compilers, measurement tools and visualization systems that
are able to provide access to 32bit Windows DLLs may work
with this DLL

Some technical hints for implementing the API into the certain
systems can be found in section 5.1.

Getting Started 11

2 Getting Started

2.1 System Requirements

Applying the CANopen Client API your system must meet the
following requirements:

• Windows Windows 7, Vista or XP running.

• 150 MByte free space on hard disk

• Softing CAN interface card

2.2 Quick Start

Common installation procedure of the CANopen Client API for
PC Windows systems:

1. Run Setup.exe in the root directory of the CD and follow
the installation dialog.

2. Chose the optional setup component “LeanCANopen” to be
installed.

3. Shut down the PC (not required for USB or PCMCIA based
interface cards).

4. Insert the CAN interface board into your PC.

5. Restart the PC (not required for USB or PCMCIA based
interface cards).

6. If the Hardware Assistant of the windows system comes up
follow the windows dialog installing the hardware drivers.

12 Getting Started

2.3 Installation Test

An installation test program can be found at
[Installation Directory] \LeanCANopen\Win32.

It is named InstTest.exe and involves four sub-tests described
in Table 2-1.

While trying to connect to a CAN network operated at 1Mbit/s,
the program reports success and/or problems in detail.

Figure 2-1 shows the screen dump of a successful installation
test on a hardware interface card which is not connected to a
communication partner.

Table 2-1: Installation tests of InstTest.exe

Test Protocol
1. Hardware access

test
Success or Error return code of
CMA_InitializeCard (see section 6.8)

2. CAN controller
access test

Success of CAN channel initialization

3. Interrupt test Success of interrupt processing
including assigning and detecting a
WIN32 interrupt event.
(If unsuccessful installation test is
continued by polling the interface.)

4. CANopen Master
firmware test

Success of start-up and shutdown of
the CANopen Client including network
boot-up. A boot-up message with
CAN ID = 1919 is sent.
If no communication partner is
connected to the CANopen Client or if
the network is operated at a speed
other than 1Mbit/s, the test states an
error accessing the CAN bus.

Getting Started 13

Figure 2-1: Installation test screen

2.3.1 Uninstall Support

After successful installation the ‘CANopen Client API’ can be
uninstalled by modifying the ‘Softing CAN Drivers and
Software’ entry in the installed program list of Windows.

14 Getting Started

2.4 Hardware Driver Notes

2.4.1 Driver Files

The hardware access of the CANopen Client API
(CANopenL2.dll) requires properly installed hardware drivers
and CAN Layer2 API. These components are mandatory items
of the software setup.

2.4.2 Compatibility Note

The hardware drivers also provide hardware access for other
CAN applications, e.g.:

• CAN L2 API V5.x

• DeviceNet API V2.x

The CANopen Client API runs with the supplied hardware
driver version (see readme.txt). It will probably run with future
versions of the hardware.

If an older hardware driver version is already installed the
driver should be updated by the setup program. The new
driver version runs also together with the older CAN software
listed above.

About CANopen [CiA 301] 15

3 About CANopen [CiA 301]

3.1 Common

3.1.1 CANopen Network

CANopen provides standardized communication mechanisms
and device functionality on basis of the Control Area Network
(ISO 11898). Since CANopen comprises real-time data
exchange as well as peer-to-peer communication it became a
common network in automated machinery.

CANopen is defined in the application layer of the ISO-OSI
Reference Model as shown in Figure 3-1. The communication
profile [CiA 301] specifies communication objects and services
for data exchange, device configuration and network
management. The CANopen devices are standardized by their
related device profiles [CiA 40x]. All standards are maintained
by the user and manufacturer group CAN in Automation (CiA).

Application
Layer

Data Link
Layer

Physical
Layer

Object

ID+Data

Signal

Application
Layer

Data Link
Layer

Physical
Layer

CANopen
DS-301

CAN Layer 2
ISO 11898

CANopen
Device

CANopen
Device

Figure 3-1: CANopen reference layer model

The CANopen Network can cover up to 128 devices, 127
Slaves and one Master. Each device is uniquely identified by
its Node-ID.

16 About CANopen [CiA 301]

The devices exchange data via communication objects of
certain types which are handled by standardized
communication services.

The communication objects are described within the Object
Dictionary and mapped to a certain identifier (COB-ID). This
mapping is also distributed within the Object Dictionary. It is
pre-defined by the Pre-Defined Connection Set in
[CiA 301] and can be remapped by the customer application.

Within the CANopen network a Master device fulfills all
Network Management (NMT) tasks for controlling and
monitoring of the Slaves. Additionally, the Master can
comprise an SDO Manager and a Configuration Manager to
realize SDO connection handling and Slave configuration.

About CANopen [CiA 301] 17

3.1.2 CANopen Device

In CANopen devices three components cooperate to realize
the specified device functionality (see Figure 3-2).

The process interface implements the overall functionality of
the device. It interacts with the process by variables referred
as application objects.

Appl.
Object

Appl.
Object

Appl.
Object

Appl.
Object

Comm.
Object

Comm.
Object

Comm.
Object

Comm.
Object

State
Machine

Index Entries

Process
Interface

Communication
Interface

Object
Dictionary

CANopen
Device

Process

Fieldbus
Figure 3-2: CANopen device model

As a central part of a CANopen device the Object Dictionary
describes the used data types and communication objects. It
also maps the application objects to the communication
objects and their related identifiers (COB-ID).

The communication objects are transferred via the CANopen
Network by the communication interface. The state machine
of the CANopen device determines the communication
behavior and is shown in Figure 3-3. All involved states and
state transitions are described shortly in Table 3-1.

18 About CANopen [CiA 301]

STOPPED

PRE-OPERATIONAL

OPERATIONAL

INITIALIZATION

Power on or
Hardware Reset

Figure 3-3: CANopen state machine

About CANopen [CiA 301] 19

Table 3-1: CANopen device states

State Remarks
PRE-
OPERATIONAL

SDO Transfer is possible allowing
parameter configuration as well as
PDO configuration and mapping.
Node guarding and SYNC processing
is possible.
PDO transfer is not allowed.
On reception of Start Remote Node
request the node is switched to
OPERATIONAL.

OPERATIONAL All communication objects can be
transferred.
All services can be performed.

STOPPED Communication is stopped except
Error Control Services. Also called
“PREPARED” in CiA 301 V3.0

Further intermediate states that finally result in state
PRE-OPERATIONAL
RESET
APPLICATION

Standard and manufacturer-specific
parameters are set to their default
values.
Autonomous state change to RESET
COMMUNICATION.

RESET
COMMUNICATION

Communication parameters are set to
the default values.
Autonomous state change to
INITIALIZING.

INITIALIZING Basic node initialization.
Transmission of the boot-up object.
Autonomous state change to PRE-
OPERATIONAL.

20 About CANopen [CiA 301]

3.1.3 CANopen Communication Objects and Services

CANopen uses several communication object types for data
exchange, network administration and device configuration.
The communication objects are handled by several transfer
services with specified protocols (see Table 3-2).

Table 3-3 lists active communication objects depending on the
CANopen device states. The objects and their services are
shortly described in the following sections.

Table 3-2: Communication objects and services

Object Service
Process Data Objects
(PDO)

Write PDO
Remote PDO Request

Service Data Objects
(SDO)

Initiate SDO Download
Download SDO Segment
Initiate SDO Upload
Upload SDO Segment
Abort SDO Transfer

Synchronization
Object (SYNC)

SYNC transmission

Network Management
Objects (NMT)

Module Control Services
(State change)
Error Control Services
(Node and life guarding)

Emergency Object
(EMCY)

EMCY transmission

Time Stamp Object
(TIME)

TIME transmission

Boot-up Object Boot-up service

About CANopen [CiA 301] 21

Table 3-3: Active communication objects

 INITIALIZING PRE-OPERATIONAL
SDO X
PDO
SYNC X
NMT X
Boot-up X
EMCY X
TIME X

 OPERATIONAL STOPPED
SDO X
PDO X
SYNC X
NMT X X
Boot-up
EMCY X
TIME X

x: available

22 About CANopen [CiA 301]

3.2 Physical Layer

CANopen devices are connected via a two-wire bus line
according to the CAN High-Speed Specification (ISO 11898-
2). The bus lines are terminated by 120 Ω resistors at both
ends (see Figure 3-4).

SlaveSlaveSlaveSlave

CANopen Network

120
Ohm

Master Slave
CAN_H

CAN_L
120
Ohm

Figure 3-4: CANopen network

The CANopen specification recommends certain baudrates
and sample points (see Table 3-4). At least one of the listed
baudrates has to be applied to the network.

The maximum bus length depends on the baudrate and the
applied cable type. For a bus length greater than 1000 m
repeater devices may be employed.

About CANopen [CiA 301] 23

Table 3-4: CANopen bit rates

Bit rate
[kbit/s]

Bit time
[µs]

Sample point (1)
[µs]

Bus length (2)
[m]

1000 1 0,75 25
800 1,25 1 50
500 2 1,75 100
250 4 3,5 250
125 8 7 500
50 20 17,5 1000
20 50 43,75 2500
10 100 87,5 5000

(1) Recommendation
(2) Worst case

24 About CANopen [CiA 301]

3.3 Process Data Object (PDO)

PDOs are used to transfer real-time application data. They can
include a maximum of 8 data bytes. Number, length and
represented application data of the PDOs are specified in the
device profile and mapped together with the COB-ID in the
Object Dictionary.

The objects are assigned a certain type out of a choice of
different transfer behaviors. All PDO transfers are managed by
type dependant unconfirmed services which base on the
producer/consumer (broadcast) model.

3.3.1 PDO Types

Basically, the PDOs can be distinguished by their
communication direction

• Receive PDO (RPDO)

• Transmit PDO (TPDO)

transmission mode

• Synchronous (cyclic/acyclic)

• Asynchronous

and triggering mode

• Event triggered (Timer, SYNC object, internal event)

• Remotely requested (RTR)

The combinations of these transfer characteristics result in
certain PDO transmission types which are assigned by a
standardized type number (see Table 3-5).

About CANopen [CiA 301] 25

Receive PDO (RPDO)

• Synchronous RPDO (0-240)
The received PDO is passed to the consuming application
at the reception the next SYNC object (see section 3.5).

• Asynchronous RPDO (254, 255)
The received PDO is passed to the application
immediately.

Transmit PDO (TPDO)

• Acyclic synchronous TPDO (0)
The PDO is sent within the synchronous time window
after occurrence of the SYNC object (see section 3.5) in
case of a prevailing application-specific event.

• Cyclic synchronous TPDO (1-240)
The PDO is sent within the synchronous time window
after occurrence of the n-th SYNC where n is equally to
the transmission type number (see Table 3-5).

• Remotely requested synchronous TPDO (252)
The PDO is sent within the synchronous time window
after occurrence of the SYNC object in case of a
prevailing remote request by another device.

• Remotely requested asynchronous TPDO (253)
The PDO is transmitted immediately after reception of a
remote request by another device.

• Asynchronous TPDO (254, 255)
The PDO is sent immediately on occurrence of an
application-specific event.

26 About CANopen [CiA 301]

Table 3-5: PDO transmission types

Transmission
Type Number

Cyclic Acyclic Sync. Async. RTR
only

0 x x
1-240 x x

241-251 reserved
252 x x
253 x x
254 x
255 x

3.3.2 PDO Services

The PDO transfer services require the CANopen devices to be
in OPERATIONAL state. Depending on their transmission type
the PDOs are transferred by following services:

• Write PDO
(on application-specific event or reception of a SYNC)

• Remote PDO Request
(on request of a consumer)

The service protocols base on the Producer/Consumer model
and are shown in Figure 3-5.

PDO Producer

Process Data

PDO Consumers

Write PDO

Request Indications

(0 < byte < 8)

About CANopen [CiA 301] 27

PDO Producer

Process Data

PDO Consumers

Remotely Requested PDO

Response Confirmation

(0 < byte < 8)

Request

Remote Request

Indication

PDO Producer

Process Data

PDO Consumers

Synchronous PDO Transmission

(0 < byte < 8)

SYNC

Figure 3-5: PDO transmission service protocols

28 About CANopen [CiA 301]

3.4 Service Data Object (SDO)

SDOs provide access to the Object Dictionary of a CANopen
device. An SDO can bear multiple data sets of arbitrary type
and size. Thus, it can be used to transfer data of any size as
well as configuration data. The data transfer bases on a
Client/Server relationship.

The server is the owner of the accessed object dictionary.
Initiating the SDO transfer the client determines index and
sub-index of the data set to be transferred. The SDO access is
realized by confirmed services (see Figure 3-6 and Figure 3-
7).

3.4.1 SDO Download

Two services write the SDO data to the Object Dictionary of
the server:

Initiate Download

Initiating the SDO download the client indicates length, index
and sub-index of the data set. The initiating service message
is confirmed by the server.

In case of an expedited download (SDO data length ≤ 4
bytes) the SDO data are included in the initiating service.
Occurred transfer errors are signalled within the confirmation
of the server.

Download Segment

If the SDO data size is larger than 4 bytes the data set is
divided in segments of maximum 7 bytes which are
successively downloaded. Transfer failures and error causes
are provided within the confirmation of the server.

About CANopen [CiA 301] 29

Client

Service Data

Server

Expedited SDO Download

Confirmation

(max. 4 bytes)

Initiate Download

Client Server

Segmented SDO Download

Confirmation

(> 4 bytes)

Initiate Download

Service Data Segment 1
Confirmation

Download Segment 1

Confirmation

Download Segment n
Service Data Segment n

Figure 3-6: SDO download services

30 About CANopen [CiA 301]

3.4.2 SDO Upload

Reading data from the Object Dictionary of the server is
processed by two services:

Initiate Upload

Initiating the SDO upload the client indicates length, index and
sub-index of the requested data set. The initiating service
message is confirmed by the server.

In case of an expedited upload (SDO data length ≤ 4 bytes)
the SDO data are included in the service confirmation of the
server. Occurred transfer errors are also signalled within the
confirmation.

Upload Segment

If the data size is larger than 4 bytes the data set is divided in
segments of maximum 7 bytes. The client sends the upload
segment requests to the server. The confirmation of that
requests includes the related data segment. Transfer failures
and error causes are also provided within the confirmation of
the server.

3.4.3 Abort SDO Transfer

SDO Uploads and Downloads can be aborted at any time by
the client or the server. The related abort service is
unconfirmed and may include the abort reason.

About CANopen [CiA 301] 31

Client Server

Expedited SDO Upload
(max. 4 bytes)

Client Server

Segmented SDO Upload

Confirmation

(> 4 bytes)

Initiate Upload

Service Data
Confirmation

Initiate Upload

Service Data Segment 1

Request Segment

Download Segment 1

Service Data Segment 1

Request Segment

Download Segment n

Figure 3-7: SDO upload services

32 About CANopen [CiA 301]

3.4.4 SDO Block Transfer

SDO Block Transfers are variations of the SDO Transfers that
are optimized for throughput. While SDO download and SDO
upload require a request and a confirmation for each
transferred data segment the SDO Block Transfers can handle
multiple data segments being transferred without the receiving
side answering to each segment. The SDO Block Transfers
allow for a configurable number of data segments (1 … 127)
that are secured by a single handshake, thus reducing the
required bandwidth and latency especially for large data
blocks.

About CANopen [CiA 301] 33

3.5 Synchronization (SYNC Object)

Automation systems often require a synchronous behavior of
certain components. In CANopen networks the
synchronization is realized by a specific communication object
(SYNC).

The SYNC producer broadcasts the SYNC message
periodically on the network while the SYNC consumers
execute the synchronous tasks on reception of the SYNC
object.

The synchronization tasks are device dependant. Beside the
time fixed transmission of the synchronous TPDOs (see
Figure 3-8) the synchronization involves the process actuation
and data sampling.

timeSYNC object

synchronous, cyclic PDO

synchronous, acyclic PDO

asynchronous PDO

Communication
Cycle Period Synchronous Window

Figure 3-8: Synchronous communication

34 About CANopen [CiA 301]

3.6 Network Management (NMT)

The Network Management (NMT) services are based on a
Master/Slave relationship. They comprise services from
network initialization, error control and device state control.

The NMT services are executed by the NMT Master using
certain NMT objects.

3.6.1 Module Control Services

The NMT Master controls the states of the Slaves by the
Module Control Services. These services are unconfirmed.
They can be performed for a single Slave, the Master or all
present devices simultaneously.

The Master transmits the NMT object (COB-ID=0) determining
the target device and the state transition which should be
performed.

Table 3-6 enumerates the available services and the related
states to which the selected device is switched (see also
section 3.1).

Table 3-6: Module Control Services

Service Target State
Start Remote Node OPERATIONAL
Stop Remote Node STOPPED
Enter Pre-Operational PRE-OPERATIONAL
Reset Node RESET APPLICATION
Reset Communication RESET COMMUNICATION

About CANopen [CiA 301] 35

3.6.2 Error Control Services

There are two different methods to determine errors in a
network - Node/Life Guarding and Heartbeat. Both allow for
supervision of Master and Slaves. The two methods can not
be used in parallel. Using one of these methods is mandatory.

Node/Life Guarding

The NMT Master polls the Slaves cyclically by a remote
transmit request (COB-ID = 1792+Node-ID). The cyclic period
of the guard request (Node Guard Time) is individually
defined for each Slave. A guarded Slave answers to the
remote request with its current state.

Master Slave

Node/Life Guarding

Device State
Response

Remote request

Device State
Response

Remote request

Node
Guard
Time

Node
Life

Time

Node
Guarding

Error

Life
Guarding

Error

Life Time = Guarding Time * Life Time Factor

Figure 3-9: Node/Life guarding protocol

36 About CANopen [CiA 301]

A remote node error is signalled by the NMT Master if

• the Slave doesn’t answer within the defined Node Life
Time or

• the answer of the addressed Slave reports an unexpected
state.

If Live Guarding is supported the Slave observes the guarding
of the NMT Master. In this case the Slave reports a Life
Guarding Error to its application if it is not guarded within its
Life Time.

Heartbeat

A Heartbeat producer cyclically transmits a Heartbeat
message (COB-ID = 1792+Node-ID) that contains its current
state. The cyclic period of the Heartbeat (Heartbeat Producer
Time) is individually defined for each device.

Any Heartbeat consumer can observe the occurrence of a
device’s Heartbeat message by an individually defined
Heartbeat Consumer Time. If the Heartbeat message does
not occur within this time a Heartbeat error is signalled.

About CANopen [CiA 301] 37

Heartbeat
Producer

Heartbeat
Consumer

Heartbeat

Device State
Request

Heartbeat
Producer

Time

Heartbeat
Error

Device State
Request

Heartbeat
Consumer

Time

Heartbeat
Consumer

Time

Figure 3-10: Heartbeat protocol

3.6.3 Boot-up service

Entering the PRE-OPERATIONAL state from INITIALIZATION
the CANopen devices introduce themselves to the network
transmitting a boot-up object (COB-ID = 1792+ Node-ID).

3.6.4 Emergency Object (EMCY)

The optional Emergency Object (COB-ID = 128 + Node-ID) is
transmitted by a CANopen device in case of an internal error
event or situation. It includes an error code number which
refers to the error type or cause.

38 About CANopen [CiA 301]

3.7 Object Dictionary

The Object Dictionary is the central part of a device profile. It
lists all objects, their data types and attributes which are
available via the CANopen network.

The entries of the Object Dictionary are accessed by their
index. If the related object is a data record or array a sub-
index references the contents of the structured object.

The available objects and their index and sub-index are
available in the certain device profiles [CiA 40x].

CANopen Client API 39

4 CANopen Client API

4.1 Common

4.1.1 CANopen Client API Concept

The CANopen Client API is compatible with the CANopen
specification [CiA 301 V 4.0.2]. It is implemented as a 32bit
Windows DLL that makes use of Softing’s speed-optimized
CAN Layer2 API.

It comprises the following components:

Layer Manager
Initializes and observes the physical layer.

SDO Manager
for SDO download and upload services including an SDO
transfer observation by timeout.

Node Manager
for administration of the Slave nodes and
realization of the NMT Master services

- Module State Control
- Emergency (EMCY) support
- Error Control (Heartbeat, Node Guarding)
- Boot-Up Service

SYNC Manager
producing and/or consuming SYNC messages.
It manages every task related to the synchronous behaviour
of the CANopen Client.

PDO Manager
for administration of the PDO buffer and
realization of the PDO transmission services

PDO Buffer
holds a consistent copy of the actual process data base. It
can bear a maximum of 512 TPDOs and 512 RPDOs.

40 CANopen Client API

Event-FIFO
Events can occur asynchronously. The Event-FIFO can
buffer up to 255 events. Its handling is described in section
4.7.

4.1.2 Driver Concept

All functions of the CANopen Client API are supplied in the
Windows DLL CANopenL2.dll.

This is a 32bit DLL that can be used by 32bit application
programs running either on 32bit or 64bit Windows operating
systems. All CANopen specific functionality is included in this
DLL.

The CANopenL2.dll itself calls the underlying CAN Layer2 API
DLL that offers CAN bus access on message level. Please
see the “Softing CAN Layer2 Manual” for details of the driver
architecture.

CANopen Client API 41

4.1.3 Main Programming Sequence

Initialization of the CAN Interface

CANopen Master Initialization

CANopen Master Startup

CMA_InitializeCard
CMA_SetIntEvent

CMA_ConfigCANChannel
CMA_InitSDOMan
CMA_InitNodeMan

CMA_Startup

CANopen Master Functionality

Release Ressources
CMA_CloseCard

CANopen Master Shutdown
CMA_ShutDown

Sync Management
NMT Services
SDO Transfer
PDO Transfer

Figure 4-1: Main programming flow chart

42 CANopen Client API

4.2 Initialization

4.2.1 Initialization of the CAN Channel

Implementation

1. Before using the CAN channel as a CANopen Client the
required hardware and system resources have to be
allocated and assigned to the application. This task is
performed calling CMA_InitializeCard (see section 6.8).

2. In case of a CANopen event the driver informs the
application by signalling a WIN32 event. As a prerequisite
the handle of this WIN32 event needs to be assigned to the
driver by CMA_SetIntEvent.

3. If the CANopen Client application is closed after a
successful initialization the locked resources are to be
released by CMA_CloseCard.

Prerequisites

• Proper driver installation (see Chapter 2).

• Valid WIN32 event handle (only if interrupt is used).

CANopen Client API 43

Sequence

CMA_InitializeCard

CANopen Master Functionality

NMT Services
SDO Transfer
PDO Transfer

FRC < 0 ?Error
Handling

CMA_SetIntEvent

n

y

CMA_CloseCard

Master Configuration/Startup

Master Shutdown

s
Figure 4-2: Initialize interface flow chart

Programming Notes

The function return code (FRC) of CMA_InitializeCard should
be evaluated to prevent access errors of succeeding
function calls. A prepared evaluation routine is available in
the source examples.

CMA_SetIntEvent may be called at any time after
CMA_InitializeCard but before the first occurrence of an
interrupt (e.g. performing start-up).

CMA_SetIntEvent can be omitted if the application does not
use the interrupt.

44 CANopen Client API

Assure that CMA_CloseCard is performed at any possible exit
of the CANopen Client application.

Omitting the release of the allocated resources by
CMA_CloseCard at program exit may cause problems
calling CMA_InitializeCard again.

Sample Programs and Source Code

Interrupt.exe
Interrupt.c

4.2.2 Hardware and Software Version Information

Implementation

In some applications the versions of the applied software and
hardware must be evaluated for error protection or customer
information reasons. These data can be accessed by calling
CMA_GetVersion.

Prerequisites

• Proper driver installation (see Chapter 2).

• Valid WIN32 event handle (only if interrupt is used).

CANopen Client API 45

4.2.3 Start-up and Shutdown of the CANopen Client

Implementation

After initialization of the CAN channel the CANopen Client is
started up calling CMA_Startup.

Activities of CMA_Startup:

1. Initialization of the Master components using the
parameters listed in Table 4-1.

2. Reset, initialization and start of the CAN controllers.

3. Transmission of the boot-up message
(COB-ID: 1792+Node-ID, default: 1919).

Table 4-1: CANopen Client initialization parameters

Master Components Initialization
Parameter

Pre-setting
(default values)

Layer 2 Management Baudrate 125 kbit/s
Node Management Client Node-ID 127
SDO Management SDO Timeout 2 s
SDO Management Timeout Factor 1

The initialization parameters are preset to default values.
They can be adjusted at customer’s choice by the API
functions in Table 4-2.

Table 4-2: CANopen Client initialization functions

Initialization Parameter Adjustable by
Baudrate CMA_ConfigCANChannel
Client Node-ID CMA_InitNodeMan
SDO Timeout CMA_InitSDOMan
SDO Timeout Factor CMA_InitSDOMan

46 CANopen Client API

After start-up the CANopen Client is in PRE-OPERATIONAL
state, i.e.:

• Client is active on the network

• SDO transfer is possible.

• Heartbeat or node guarding can be started.

• SYNC production/consumption can be started.

• No PDO transfer.

If the CANopen Client is in PRE-OPERATIONAL or
OPERATIONAL state it is also termed to be ‘active’.

Complementary to the start-up the shutdown of the CANopen
Client is performed by CMA_Shutdown, i.e.:

• CAN controller is reset.

• CANopen Client is logically removed from the
network.

• Parameters in Table 4-1 are reset to their defaults.

The Client can be restarted without a complete shutdown
at any time calling CMA_Startup again. The customized
settings of the parameters in Table 4-1 are preserved in this
case. Any other Client configurations and settings are reset to
their default values or cleared, i.e.:

• Heartbeat / Node guarding is stopped.

• SYNC handling is stopped.

• PDO buffer is cleared.

• Client is reinitialized and switched to PRE-
OPERATIONAL.

• Client is active on the bus

CANopen Client API 47

Prerequisites

• A valid CAN handle provided by CMA_InitializeCard.

Sequence

CMA_ConfigCANChannel

CANopen Master Functionality
NMT Services
SDO Transfer
PDO Transfer

CMA_Startup

SYNC Handling

CMA_InitSDOMan

CMA_InitNodeMan

CMA_Shutdown

CMA_CloseCard

Initialization of the Interface
CMA_InitializeCard
CMA_SetIntEvent

Figure 4-3: CANopen Client start-up/shutdown flowchart

NOTE:
The start-up parameters can also be adjusted while the
Client is active. Anyway, the new settings are applied
during the next start-up.

48 CANopen Client API

Programming Notes

• The optional configuration of the start-up parameters by

CMA_ConfigCANChannel
CMA_InitNodeMan
CMA_InitSDOMan

can be performed at any time after the initialization of the
CAN channel. The values are buffered and are taken into
effect during the next start-up. If the parameter
configuration is omitted, the Client starts up using the
default values (see Table 4-1).

• If you restart the CANopen Client the node list of the node
manager is cleared and needs to be reinitialized
(CMA_AddNode).

• If you restart the CANopen Client a previous Heartbeat or
Node Guarding is stopped and needs to be restarted
(CMA_RequestGuarding).

• If you restart the CANopen Client a previous SYNC
producing or consuming is stopped and needs to be
reconfigured (CMA_ConfigSyncMan).

Sample Programs and Source Code

All sample programs and source code.

CANopen Client API 49

4.3 SDO Transfer

4.3.1 Common

The CANopen Client uses the default SDOs of the Predefined
Connection Set as specified in [CiA 301], i.e. one SDO per
node.

The target of the SDO transfer is the Object Dictionary either
of the CANopen Client or a connected Slave.

Timeout

The SDO connections between the CANopen Client and the
Slave nodes are observed by a timeout. This timeout is
configured by parameter usSDOTimeout during start-up (see
section 4.2.3).

The timeout starts when the Client is transmitting its SDO
transfer request to the slave (see section 3.4). If the timeout
expires without a response or confirmation of the Slave an
SDOError event is signalled to the application.

Master
(Firmware)

Slave

SDO Request

Missed SDO
Response

Timeout
usSDOTimout

[ms]

SDO Request

Master
(Application)

SDOError event
(Error Class: 05
Error Code: 04
Add. Code: 00 00)

Figure 4-4: SDO transfer timeout

50 CANopen Client API

4.3.2 SDO Download

Implementation

Initiate the download by CMA_InitDownload or by
CMA_InitBlockDownload supplying

- Node-ID of the target
- SDO index and sub-index
- Overall data length
- SDO data

For CMA_InitDownload the CANopen Client API evaluates the
data length and decides autonomously if the data fit into an
expedited SDO download or if a segmented SDO Download is
required. Successful SDO downloads, regardless of their type
(expedited, segmented or block) are confirmed by the event
DownloadCompleted in the Event-FIFO. Occurred transfer
errors are passed to the application by the SDOError event
including the related SDO error class, error code and
additional code (see section 4.7).

Prerequisites

1. A valid CAN handle provided by CMA_InitializeCard.

2. CANopen Client is active and in OPERATIONAL or PRE-
OPERATIONAL state.

CANopen Client API 51

Sequence

Fehler! Es ist nicht möglich, durch die Bearbeitung von
Feldfunktionen Objekte zu erstellen.

Figure 4-5: SDO download flow chart

Programming Notes

If the Slave aborts the SDO transfer the Client application is
informed by a related SDOError event in the Event-FIFO.

The Object Dictionary entries of the CANopen Client (see
section 4.7) can be written by SDO download referring to
the Client Node-ID. The Client Node-ID is configured by
CMA_InitNodeMan.

All download commands are operated asynchronously. The
functions don’t return any confirmations of the actual SDO
transfer. Such transfer confirmations or errors are signalled
by following events via the Event-FIFO (see section 4.7):
 DownloadCompleted
 SDOError

Sample Programs and Source Code

SDODownload.exe
SDODownload.c

4.3.3 SDO Upload

Implementation

1. Initiate the download by CMA_InitUpload supplying

- Node-ID of the source
- SDO index and sub-index

or by CMA_InitBlockUpload supplying

- Node-ID of the source
- SDO index and sub-index
- Number of segments within one block (1 …127)

52 CANopen Client API

2. Wait for the UploadCompleted event in the Event-FIFO. It
contains the uploaded SDO data and data length. In case
of an expedited upload the event also contains the
uploaded data.

3. For segmented and block uploads the uploaded data need
to be read by CMA_ReadData.

Successful SDO uploads, regardless of their type (expedited,
segmented or block) are confirmed by the event
UploadCompleted in the Event-FIFO. Occurred transfer errors
are passed to the application by the SDOError event including
the related SDO error class, error code and additional code
(see section 4.7).

Prerequisites

1. A valid CAN handle provided by CMA_InitializeCard.

2. CANopen Client is active and in OPERATIONAL or PRE-
OPERATIONAL state.

CANopen Client API 53

Sequence

CMA_Init(Block)Upload

CMA_AbortSDOTransmission

Event?

SDO expedited?

UploadCompleted

n

n

Application
dependent

transfer abort
event

CMA_ReadData

y

n

Figure 4-6: SDO upload flow chart

Programming Notes

If the Slave aborts the SDO transfer the Client application is
informed by a related SDOError event in the Event-FIFO.

The Object Dictionary entries of the CANopen Client (see
section 4.7) can be read by the SDO upload referencing
the Client Node-ID in the function parameter. The Client
Node-ID is configured by CMA_InitNodeMan.

All upload commands are operated asynchronously. The
functions don’t return any confirmations of the actual SDO
transfer. Such transfer confirmations or errors are signalled
by following events via the Event-FIFO (see section 4.7):

 UploadCompleted
SDOError

Sample Programs and Source Code

54 CANopen Client API

SDOUpload.exe
SDOUpload.c

4.3.4 Abort SDO Transfer

A pending SDO transfer can be aborted at any time by
CMA_AbortSDOTransmission (see section 6.1). The abort
service is submitted to the CANopen Client API
asynchronously without any confirmation.

If the SDO transfer is aborted externally by the Slave or
internally by the CANopen Client the application is informed by
an error event in the Event-FIFO (see section 4.7). The event
of SDOError event type includes the error cause encoded in
error class, code and additional code as defined in the
CANopen specification [CiA 301] (see Appendix A).

CANopen Client API 55

4.4 PDO Transfer

The CANopen Client buffers PDOs internally. This buffer can
include up to 512 TPDOs and 512 RPDOs. Before the PDOs
can be transmitted or received they have to be installed
defining the PDO type and attributes.

4.4.1 PDO Buffer Administration

Implementation

Install PDO

TPDOs and RPDOs are installed by CMA_InstallPDO_E
determining

- COB-ID
- Transmission type (see Table 6-1)
- Data length of the PDO
- Initial PDO data and start-up behaviour

The function returns a handle to the PDO which is used by
other API functions to access the installed PDO.

For RPDOs the customer can define if the application is
informed by a PDOReceived event in case of the reception of
the PDO.

If the CANopen Client is switched from PRE-OPERATIONAL
to OPERATIONAL state (see section 4.6.3) optionally all
installed TPDOs may be transmitted once to the network
automatically.

Read PDO Data

The actual data of the installed PDOs can be read from the
PDO buffer by CMA_ReadPDO.

56 CANopen Client API

Remove PDO

The installed PDOs can be removed from the PDO buffer
individually by CMA_RemovePDO. A shutdown or a repeated
start-up of the CANopen Client removes the installed PDOs
globally.

Prerequisites

1. A valid CAN handle provided by CMA_InitializeCard.

2. CANopen Client is active and in OPERATIONAL or PRE-
OPERATIONAL state.

3. CMA_RemovePDO and CMA_ReadPDO require a valid
PDO handle returned by CMA_InstallPDO_E.

Programming Notes

The configuration functions are commanded via the Command
Interface and return the success or errors accessing the
PDO buffer.

Overall, a maximum of 512 TPDOs and 512 RPDOs can be
installed.

Sample Programs and Source Code

PDOTransfer.exe
PDOTransfer.c

CANopen Client API 57

4.4.2 PDO Services

Implementation

Transmit PDO

The data of the TPDOs are written to the PDO buffer by

• CMA_WritePDO refreshing all data bytes

• CMA_WritePDOBit refreshing a certain data bit

The CANopen Client API transmits the PDOs in the PDO
buffer depending on the PDO transmission type chosen by
CMA_InstallPDO_E. In Table 4-3 the instants of transmission
are listed together with the available PDO transmission types.

Table 4-3: PDO transmission types and instants

PDO
Transmission
Type

Type
Number

Transmission Instant

Acyclic
synchronous

0 Next occurrence of the
SYNC after CMA_WritePDO
or CMA_WritePDOBit

Cyclic
synchronous

1-240 Every nth occurrence of the
SYNC
(n = PDO Transmission
Type Number)

Synchronous
(RTR only)

252 Next occurrence of the
SYNC after reception of a
remote frame of the same
COB-ID.

Asynchronous
(RTR only)

253 Reception of a remote frame
of the same COB-ID.

Asynchronous 254, 255 After refresh of PDO data by
CMA_WritePDO or
CMA_WritePDOBit

58 CANopen Client API

Beside the transmission instants in Table 4-3 all installed
PDOs are immediatly transmitted once on

• CANopen Client state change to OPERATIONAL
(CMA_ChangeState) if initial transmission is enabled

• Reception of a remote frame of the same COB-ID
(except TPDOs of type 252)

Remote PDO Request

PDOs provided by a Slave can be remotely requested by
CMA_SendRemotePDO. Since the Slave replies by sending
the related PDO data, a valid RPDO installation
(CMA_InstallPDO_E) with the same COB-ID is required for
proper operation. The application is informed about the
reception of the replyed PDO by the event PDOReceived in
the Event-FIFO.

Receive PDO (RPDO)

If an installed RPDO is received the CANopen Client API
writes the data to the PDO buffer. The application is informed
about the reception by the event PDOReceived in the Event-
FIFO if the PDO was installed determining ucEventNotif ≠ 0.

Prerequisites

1. A valid CAN handle provided by CMA_InitializeCard.

2. CANopen Client is active and in OPERATIONAL state.

3. A valid PDO handle returned by CMA_InstallPDO_E.

Programming Notes

PDOs in the PDO buffer are accessed referencing the PDO
handle returned by CMA_InstallPDO_E.

All PDOs are globally removed by a Client shutdown
(CMA_Shutdown) or repeated start-up (CMA_Startup).

CANopen Client API 59

The PDOs can be installed as soon as the CANopen Client is
active, i.e. after start-up. But the PDO transfer requires the
Client to be in OPERATIONAL state.

Sample Programs and Source Code

PDOTransfer.exe
PDOTransfer.c

60 CANopen Client API

4.5 Synchronization

Implementation

The SYNC Manager coordinates every task concerning the
SYNC object, i.e.

• Transmission of SYNC (Producer)

• Initiation of synchronous PDO transmissions (Consumer)

During start-up the SYNC Manager is initialized to either
produce or consume the SYNC object.

Start SYNC Transmission

The transmission of the SYNC object is started by
CMA_ConfigSyncMan with parameter ucProducerMode ≠ 0.
The COB-ID and the cycle period of the SYNC object can be
adjusted at customer’s choice.

Stop SYNC Transmission

The transmission of the SYNC object is stopped by
CMA_ConfigSyncMan determining ucProducerMode = 0.

Enable Synchronous PDO Transmission

To enable the transmission of synchronous PDOs the SYNC
Manager must be additionally configured to act as SYNC
consumer, i.e. calling CMA_ConfigSyncMan with
ucConsumerMode ≠ 0.

Prerequisites

1. CANopen Client is active and in OPERATIONAL or PRE-
OPERATIONAL state.

Programming Notes

The SYNC Manager can be defined as Producer and
Consumer of the SYNC object simultaneously.

The cycle period can be adjusted within the range
0...32 767 000 μs.

CANopen Client API 61

If the Client is shutdown (CMA_Shutdown) or restarted
(CMA_Startup) the SYNC Manager is reset to the default
parameters, i.e. no consumption or production of the SYNC
object.

If synchronous PDOs are installed the SYNC Manager must
be configured to consume the SYNC.

The transmission of the SYNC starts as soon as
CMA_ConfigSyncMan returns successfully. The
transmission of the synchronous PDOs starts when the
CANopen Client is switched to OPERATIONAL state and
the SYNC Manager is defined as Consumer.

Sample Programs and Source Code

PDOTransfer.exe

PDOTransfer.c

62 CANopen Client API

4.6 NMT Services

The CANopen Client API supports the NMT functionality as
defined in [CiA 301], i.e. administration and observation of the
Slave nodes in the CANopen network.

4.6.1 Node Manager Configuration

Implementation

Initialize the NMT Master

The Node Manager is initialized by configuring the Client
Node-ID using CMA_InitNodeMan.

Register Slave Node

As a prerequisite for the NMT Master services the Slave
nodes have to be registered by CMA_AddNode providing its
Node-ID and guarding / heartbeat parameters.

Remove Slave Node

The registered Slave nodes can be individually removed from
the node list by CMA_RemoveNode. In this case the guarding
/ heartbeat supervision of the Slave is stopped. Additionally,
the Slave is switched into a defined state which is selected by
the function parameter ucState.

Globally, the node list of the Node Manager is cleared by a
restart (CMA_Startup) or a shutdown (CMA_Shutdown) of the
CANopen Client.

Prerequisites

CANopen Client is active, i.e. in OPERATIONAL, PREPARED
or PRE-OPERATIONAL state.

Programming Notes

The NMT Master services Node Guarding, Heartbeat
supervision, Module State Control and EMCY Object
processing are only performed for nodes which are added
to the node list of the Node Manager.

CANopen Client API 63

The CANopen Client does not need to be added to the node
list. Its Node-ID is configured by CMA_InitNodeMan. The
states of the CANopen Client can be switched as soon as it
is active (start-up).

Sample Programs and Source Code

NMTServices.exe
NMTServices.c

4.6.2 Node Guarding / Heartbeat Supervision

Implementation

Configuration of the Supervision Parameters

The parameters of the Node Guarding or Heartbeat
supervision are defined registering the Slave to the node list of
the Node Manager via CMA_AddNode (see section 4.6.2 and
6.2). The parameters cannot be reconfigured while the Slave
is registered on the node list. If the parameters need to be
changed the Slave has to be removed by CMA_RemoveNode
and subsequently re-registered by CMA_AddNode.

Start Supervision

The Node Guarding or Heartbeat supervision of a Slave node
is started by calling CMA_RequestGuarding with parameter
ucReqGuard ≠ 0.

Stop Guarding

The Node Guarding of a Slave node by the CANopen Client is
stopped calling CMA_RequestGuarding with parameter
ucReqGuard = 0.

The guarding is also stopped removing the Slave node via
CMA_RemoveNode.

Guarding Errors

Detected guarding errors or problems are posted to the
application by the event ErrorEvent of type GuardError in the

64 CANopen Client API

Event-FIFO (see section 4.7). Table 4-4 lists the detected
guarding errors and their error codes.

Table 4-4: Guarding errors

Error
Code

Guarding Error

1 Guarding is active.
A valid guard response was received after a
preceding guard error 5.

2 No response of the Slave to a guard request within
the guard time.

3 No response of the Slave to a guard request within
the guard time and the retries (ucRetryFactor) are
expired.

4 Toggle-Bit error in the guard response of the Slave.
5 Slave state has changed unexpectedly.

Prerequisites

1. CANopen Client is active, i.e. in OPERATIONAL,
PREPARED or PRE-OPERATIONAL state.

2. Slave node is registered in the node list (CMA_AddNode).

Programming Notes

If the CANopen Client is restarted or shut down the guarding /
heartbeat supervision of the Slaves is stopped globally.

Each Slave can be configured either for Node Guarding, or for
Heartbeat supervision. A Slave can not use Node Guarding
and Heartbeat supervision in parallel.

Sample Programs and Source Code

NMTServices.exe
NMTSevices.c

CANopen Client API 65

4.6.3 Module State Control

Implementation

The states of the registered Slaves and the CANopen Client
can be switched by CMA_ChangeState defining the target
state in the parameter ucState to

STOPPED
OPERATIONAL
RESET NODE
RESET COMMUNICATION
PRE-OPERATIONAL

The states are described in section 3.1.2 and 3.6.1.

The target node is addressed by its Node-ID. If the Client’s
state is to be switched the Client Node-ID or 0 must be defined
in the parameter ucNodeID. Setting ucNodeID to 128 switches
the states of all registered Slaves and the Client
simultaneously.

Prerequisites

1. CANopen Client is active and in OPERATIONAL,
PREPARED or PRE-OPERATIONAL state.

2. Slave nodes are registered in the node list
(CMA_AddNode).

Programming Notes

After start-up the CANopen Client is in PRE-OPERATIONAL
state. To enable PDO transfer it needs to be switched to
OPERATIONAL state by CMA_ChangeState.

Sample Programs and Source Code

NMTServices.exe
NMTSevices.c

66 CANopen Client API

4.6.4 EMCY Object

Received emergency messages (COB-ID = 128 + Node-ID) of
the Slaves are posted to the application by the
EMCYReceived event in the Event-FIFO (see section 4.7).
The event includes the data bytes of the EMCY object which
are defined in the [CiA 301].

4.6.5 Boot-Up Service

The CANopen Client automatically transmits its boot-up
message (COB-ID = 1792 + Node-ID) during start-up
(CMA_Startup).

Received boot-up messages of registered Slaves are detected
and evaluated by the Node Guarding (see section 4.6.2)

CANopen Client API 67

4.7 API Events and Event-FIFO

4.7.1 Reading the Event-FIFO

The CANopen Client informs the application about certain
events which are posted to the application via the Event-FIFO.
Additionally, a WIN32 event is triggered by the API.

The posted event messages are read out of the Event-FIFO
calling CMA_ReadEvent which may be implemented in an
event thread (see section 0) or a polling routine. The returned
parameter structure includes the event type and the data (see
section 4.7.2). For the event UploadCompleted the additional
parameter ulDataLenSegmented indicates the total number of
bytes included in the respective SDO upload.

The Event-FIFO can hold up to 255 entries. Thus it enables
the application to overcome short service breaks without
losing event messages.

4.7.2 Event Types and Data

The occurred events are classified by their event type in
ucEventType and related event data in the ucaEventData
array (see Table 4-5 and

68 CANopen Client API

Table 4-6).

CANopen Client API 69

Table 4-5: Event types

Event Type
(ucEventType)

Description

(0) NoEvent Event-FIFO is empty.
(3) DownloadCompleted SDO download completed

successfully.
(see section 4.3.2)

(5) UploadCompleted SDO upload completed
successfully.
(see section 4.3.3)

(11) EMCYReceived Emergency message of a
Slave node received.

(13) BootUpReceived Boot-up message of a Slave
node received.

(15) ErrorEvent API, CAN, SDO or Guarding
error (see Table 4-7).

(30) NextDownloadSegment Not used (for compatibility
only)

(31) NextUploadSegment Not used (for compatibility
only)

(32) PDOReceived An RPDO was received.
(see section 4.4.2)

(33) ShutDownCompleted CANopen Client shutdown
completed successfully.
(see section 4.2.3)

(34) StartupCompleted CANopen Client start-up
completed successfully.
(see section 4.2.3)

70 CANopen Client API

Table 4-6: Event data

Event Data Array (ucaEventData) Event Type
No. Data

NoEvent None.

[0] Node-ID of the SDO
transfer target.

[1] SDO sub-index.

DownloadCompleted

[2,3] SDO index (low, high byte)
[0] Node-ID of the SDO

transfer source.
[1] SDO sub-index.
[2,3] SDO index (low, high byte)
[4] SDO data length.

FFH: Segmented SDO;
 no data included;
 data length in element
 ulDataLenSegmented
others: expedited SDO;
 length of included data

UploadCompleted

[5..] Expedited upload data
[0] Node-ID of the Slave. EMCYReceived
[1...8] EMCY object data [0...7]

BootUpReceived [0] Node-ID of the Slave.
ErrorEvent [1...] Error type and data

(see Table 4-7)
[0,1] RPDO handle (low, high)
[2] Received data length.

PDOReceived

[3...] Received data.
ShutDownCompleted None.
StartupCompleted None.

CANopen Client API 71

Table 4-7: Error event types and data

Event Data Array (ucaEventData) Type
No. (*)

Error
Event
Type Field

No.
Data

[1] Reserved. 1 API Error
[2,3] Error code (low, high)

0x0051: Event-FIFO overrun.
0x0052: RPDO could not be
 written.
0x0053: TPDO could not be
 read.
others: Internal errors
 Restart of the Client
 necessary.

[1] Reserved
Error code (low, high)
0x0002 TX queue overrun.

Transmit request is
lost.

0x0100 RX queue overrun.
0x0101 CAN controller state

changed to
BUS OFF.
Restart of the Client
necessary.

0x0102 CAN controller state
changed to
ERROR PASSIVE.

2 CAN Error
 [2,3]

0x0103 CAN controller state
changed to
ERROR ACTIVE.

(*) ucEventData[0]

72 CANopen Client API

Event Data Array (ucaEventData) Type
No. (*)

Error
Event
Type Field

No.
Data

[1] Node-ID of the target or source
[2] SDO error class

(see Appendix A)
[3] SDO error code

(see Appendix A)

3 SDO Error

[4,5] Additional SDO error code
(see Appendix A)

[1] Node-ID of the Slave 4 Guard
Error

[2] Error Code
(see Table 4-4)

(*) ucEventData[0]

CANopen Client API 73

4.8 Client Object Dictionary

The local Object Dictionary of the CANopen Client API
includes the entries listed in Table 4-8. They can be accessed
using the SDO download and upload services described in
section 4.3.

Table 4-8: Object Dictionary entries of the CANopen Client

Object Index
Device Type 1000H
Error Register 1001H
SYNC COB-ID 1005H
Communication Cycle Period 1006H
Manufacturer Device Name 1008H
Manufacturer Hardware Version 1009H
Manufacturer Software Version 100AH
Identity Object 1018H

74 Programming Notes

5 Programming Notes

5.1 API Function Linking

5.1.1 Calling Convention and Data Types

The CANopen Cleient API DLL exports its C API functions
compliant to the ‘stdcall’ calling convention. This standard is
supported by nearly all compiler types and visualization tools.
Basically the parameter succession on the stack and naming
of the functions in the export table are defined by the calling
convention.

The API functions appear in the export table of the DLL as:

‘_<FunctionName>@<NumberOfParameterBytes>’

Examples: CMA_InitializeCard@20

 CMA_Startup@4

 CMA_InitDownload@24

The naming convention in the export table must be observed if
the application directly accesses the DLL, i.e. if the supplied
import library CANopenL2.lib is not used.

The API functions use the basic data types. Pointers of any
type represent a 4-byte address. Each parameter requires 4
bytes at a 4byte aligned offset even if the actual size of a
parameter is smaller (e.g. 1 byte for "unsigned char"). Actual
parameter length of each function can be found in readme.txt.

Programming Notes 75

Event Processing

5.1.2 Interrupt Events

For many applications it is useful to evaluate occurred
CANopen events by an interrupt triggered routine. Otherwise,
the Event-FIFO must be polled for new events.

When the CANopen Client API is triggered by hardware
interrupts it determines the corresponding CANopen events
and puts them in the Event-FIFO, i.e.:

• Reception of an PDO

• Reception of an EMCY

• Completion of start-up or shutdown of the Client

• Overrun of the Event-FIFO

• API internal errors

• Bus state change

• Overrun of transmit queue

• Overrun of receive queue

• SDO transfer error

• Guarding error

5.1.3 WIN32 Interrupt Programming

The CANopen Client API can trigger a WIN32 event which
may be evaluated by the application to control a WIN32
process or thread. Thus, an application or thread can be
created which is only processed in case of a new CANopen
event.

76 Programming Notes

As a prerequisite the CANopen Client API must be supplied
with the handle of an application created WIN32 event by the
API function CANPC_set_interrupt_event. Furthermore a
thread should be created and started which gets into WAIT
status until this event is triggered. Then, the necessary
activities can be processed and the thread gets back into
WAIT status.

Before any termination of the WIN32 process the created
resources should be released for proper operation.

The interrupt usage is exemplarily implemented in ‘Interrupt.c’
in the ‘\Sample\C’ directory of the installed software. This C
source code provides macro functions for initialization and
termination of the interrupt handling as well as an interrupt
service thread.

If you setup an own application implementing the interrupt
thread as demonstrated the C/C++ compiler must generate
the code using the runtime library for multithread applications.

Function Reference 77

6 Function Reference

6.1 CMA_AbortSDOTransmission

Description

Calling CMA_AbortSDOTransmission a pending segmented
SDO transfer is cancelled and the abort transfer request is
sent to the Slave of Node-ID ucNodeID.

The command is not acknowledged to the application by the
CANopen Client API.

Application Notes

CMA_AbortSDOTransmission requires an active Client in
OPERATIONAL or PREOPERATIONAL state.

Function Call

short CMA_AbortSDOTransmission(

 unsigned char ucChannelHandle,
unsigned char ucNodeID);

Parameter List

Parameter Description
ucChannelHandle CAN channel handle returned by

CMA_InitializeCard.
Node-ID of the target node.

0: CANopen Client
ucNodeID

[1-127]: Node-ID
(Node-ID of CANopen Client
defined by CMA_InitNodeMan
is also possible)

78 Function Reference

Function Return Code

Return
Code

Description

0: Function completed successfully. Command
posted to the Command FIFO.

-105: ucChannelHandle not defined.
-117: Command FIFO is full. Command denied.

Related Events

Event Description
SDOError Error in SDO transfer.

See Also

4.3 SDO Transfer
6.10 CMA_InitDownload
6.10 CMA_InitUpload
6.15 CMA_ReadEvent

Function Reference 79

6.2 CMA_AddNode

Description

CMA_AddNode introduces a CANopen Slave with Node-ID
ucNodeID to the NMT Master and configures its Node
Guarding / Heartbeat supervision parameters.

Node Guarding is parameterized by the guarding cycle time
usGuardTime. If the Slave does not respond within this guard
time a guard error event is posted to the application. The
parameter ucRetryFactor determines the guard retries on
occurrence of a guard error, i.e.
 ucRetryFactor = NoOfRetries + 1.

The parameter ucErrAction defines whether the guarding is
restarted or stopped if the guard retries are expired without a
response of the Slave.

Heartbeat supervision is parameterized by the parameter
ulHeartBeatInterval. If the Slave does not respond within this
interval guard error event is posted to the application.

The function CMA_AddNode is a prerequisite for all
subsequent NMT Master functions concerning the Slave node,
i.e. node guarding and remote state change.

The added node can be removed from the NMT Masters node
list by CMA_RemoveNode. It is automatically removed by
calling CMA_Shutdown or by calling CMA_Startup again.

Application Notes

CMA_AddNode requires an active Client (start-up).

If Node Guarding or Heartbeat supervision is enabled for the
added node it can be started and stopped by
CMA_RequestGuarding. The COB-ID of the error control
object is set to 1792 + Node-ID as defined in the Predefined
Connection Set [CiA 301].

80 Function Reference

Function Call

short CMA_AddNode(
 unsigned char ucChannelHandle,
 CMA_NodeConfig stNodeConfig);

Parameter List

typedef struct
{
 unsigned char ucNodeID;
 unsigned short usGuardTime;
 unsigned char ucRetryFactor;
 unsigned long ulHeartBeatInterval;
 unsigned char ucErrAction;
} CMA_NodeConfig;

Parameter Description
ucChannelHandle CAN channel handle returned by

CMA_InitializeCard.
Node-ID of the Slave node. ucNodeID

Range: [1-127]
Guarding time [ms] of the Slave node.

0: Guarding disabled.
usGuardTime

others: Guard time in ms.
Number of guarding tries if the Slave
doesn’t answer.
ucRetryFactor = NoOfRetries + 1

ucRetryFactor

Range: [1-127]
Heartbeat supervision time [ms] for
the Slave node. Heartbeat production
time for the Client.

0: Heartbeat (supervision)
disabled.

ulHeartBeatInterval

others: Interval in ms.

Function Reference 81

Parameter Description
Error handling in case of detected
guarding errors.
Bit 0 = 0: Application is informed by

a GuardError event in the
Event-FIFO.

Bit 0 = 1: Application is informed by
a GuardError event in the
Event-FIFO.
Guarding is restarted if
usGuardTime ≠ 0.

ucErrAction

other
Bits:

Reserved.
(initialize with 0)

Function Return Code

Return
Code

Description

0: Function completed successfully.
-103: Function timeout.
-105: ucChannelHandle not defined.
-112: Node-ID invalid or assigned to the Client.
-113: Client not active. Start-up required.

Related Events

Event Description
GuardError Guarding error occured.

(see section 4.6.2)

82 Function Reference

Example

NMTServices.c

See Also

4.6.1 Node Manager Configurations
6.19 CMA_RemoveNode

Function Reference 83

6.3 CMA_ChangeState

Description

CMA_ChangeState is used to change the state of a Slave or
the Client, e.g. state change to OPERATIONAL to enable
PDO transfer.

The service initiates a state transition of a certain node with
Node-ID ucNodeID or of all nodes simultaneously. The new
state is determined by ucState.

Application Notes

Calling CMA_ChangeState requires an active Client (Start-up).

Before using CMA_ChangeState the selected Slave node
must have been registered by CMA_AddNode. The Node-ID
of the Client is 127 or defined by CMA_InitNodeMan. In case
of a Client state transition the sending of the NMT service
object (COB-ID=0) is suppressed.

A Client state transition to OPERATIONAL is necessary for the
PDO transfer. It is realized by CMA_ChangeState referring to
the Client Node-ID defined by CMA_ConfigNodeMan.

Function Call

short CMA_ChangeState(

 unsigned char ucChannelHandle ,
unsigned char ucNodeID,
unsigned char ucState);

84 Function Reference

Parameter List

Parameter Description
ucChannelHandle CAN channel handle returned by

CMA_InitializeCard.
Node-ID of the Slave node.

0: CANopen Client
[1-127]: Single Node-ID

ucNodeID

128: All nodes
Requested state (state transition)

4: STOPPED (for compatibility
with CiA 301 V3.0 also
called “PREPARED”)
(Stop Remote Node)

5: OPERATIONAL
(Start Remote Node)

6: RESET APPLICATION
(Reset Node)

7: RESET COMMUNICATION
(Reset Communication)

ucState

127: PRE-OPERATIONAL
(Enter Pre-operational)

Function Reference 85

Function Return Code

Return
Code

Description

0: Function completed successfully.
-103: Function timeout.
-105: ucChannelHandle not defined.
-109: Node-ID ucNodeID not valid (CMA_AddNode).
-113: Client not active. Start-up required.
-114: Requested state ucState is not defined.
-115: Transmit queue is full.

Related Events

None.

Example

NMTServices.c

See Also

4.6.1 Node Manager Configuration
4.6.3 Module State Control
6.2 CMA_AddNode
6.19 CMA_RemoveNode

86 Function Reference

6.4 CMA_CloseCard

Description

CMA_CloseCard releases the hardware driver resources and
the handle ucCANHandle allocated by CMA_InitializeCard.

Application Notes

CMA_CloseCard is a mandatory function call before any exit
of the application. If the function is omitted the resources may
stay locked and calling CMA_InitializeCard subsequently may
fail.

Before leaving the CANopen Client application by
CMA_CloseCard it should be shutdown by CMA_Shutdown to
prevent the network from uncontrolled actions and uncertain
behavior.

Function Call

short CMA_CloseCard(

 unsigned char *ucpCANHandle);

Parameter List

Parameter Description
ucpCANHandle Handle for CAN access returned

by CMA_InitializeCard.

Function Reference 87

Function Return Code

Return
Code

Description

0: Function completed successfully.
-105: CAN channel handle not defined.

Related Events

None.

Example

static unsigned char ucCANHandle;

// Allocate CAN channel named “CANpro USB_1”
CMA_InitializeCard (0xFFFFFFFF, 1, &ucCANHandle,
0,”CANpro USB_1”);

// start-up Master with new settings
ret = CMA_Startup (ucCANHandle);

 ...

// shutdown Master
ret = CMA_Shutdown (ucCANHandle);

// Release driver resources
ret = CMA_CloseCard (ucCANHandle);

See Also

4.2 Initialization
6.8 CMA_InitializeCard

88 Function Reference

6.5 CMA_ConfigCANChannel

Description

The function CMA_ConfigCANChannel defines the

Baudrate and

Acceptance filter

settings of the CAN channel referenced by ucChannelHandle.

The defined parameter values are buffered in the CANopen
Client API. They are applied to the CAN controller during the
next start-up of the CANopen Client (CMA_Startup).

The bit timing ucBaudrate can be set to certain predefined
values according to the CANopen recommendation (see
parameter table).

CMA_ConfigCANChannel can be used optionally. If it is
omitted or CMA_Shutdown was called afterwards, the
parameters are set to following default values:

Baudrate = 125 kbit/s

No acceptance filter (ucAccMask = ucAccCode = 0), all
identifiers are received.

Application Notes

CMA_ConfigCANChannel can be called at any time after
initialization of the CAN channel (CMA_InitializeCard) but the
changed values are taken into effect by the next Client start-up
(CMA_Start_up).

If Baudrate ucBaudrate is set to 0xFF it is possible to define
the bit time configuration individually by the parameters
ucPresc, ucSjw; ucTSeg1 and ucTSeg2.

It is recommended not to use acceptance filtering. If
ucAccMask is set to values other than 0, identifiers not
matching with ucAccCode in their eight most significant bits
are not received. This may affect the compliance with the
CANopen protocol specification. Therefore acceptance filtering
should only be used by experts.

Function Reference 89

Function Call

short CMA_ConfigCANChannel(

 unsigned char ucChannelHandle,
 CMA_CAN_CONFIG stCANConfig);

Parameter List

typedef struct
 {
 unsigned char ucBaudrate;
 unsigned char ucPresc;
 unsigned char ucSjw;
 unsigned char ucTSeg1;
 unsigned char ucTSeg2;
 unsigned char ucAccCode;
 unsigned char ucAccMask;
 } CMA_CAN_CONFIG;

Parameter Description
ucChannelHandle CAN channel handle returned by

CMA_InitializeCard.
Predefined baudrate.

0: 1 Mbit/s
1: 800 Kbit/s
2: 500 Kbit/s
3: 250 Kbit/s
4: 125 Kbit/s
5: 50 Kbit/s
6: 20 Kbit/s
7: 10 Kbit/s

0xFF: No predefined baudrate.
ucPresc, ucSjw, ucTSeg1 and
TSeg2 are valid

ucBaudrate

others: Not valid

90 Function Reference

Parameter Description
ucPresc Prescaler ;

only valid with ucBaudrate=0xFF
ucSjw Synchronization jump width,

only valid with ucBaudrate=0xFF.
ucTSeg1 Time segment 1;

only valid with ucBaudrate=0xFF.
ucTSeg2 Time segment 1;

only valid with ucBaudrate=0xFF.
ucAccCode Acceptance code

only valid with ucBaudrate=0xFF.
ucAccMask Acceptance mask

only valid with ucBaudrate=0xFF.

Function Return Code

Return
Code

Description

0: Function completed successfully.
-103: Function timeout.
-105: ucChannelHandle not defined.
-106: Invalid baudrate parameter

Related Events

None.

Function Reference 91

Example

// Setting baudrate to 1Mbit/s,

// ucCANHandle returned by CMA_initializeCard

CMA_CAN_CONFIG CANConfig;

CANConfig.ucBaudRate = 0;
ret = CMA_ConfigCANChannel (ucCANHandle, CANConfig);

// Reset and start Client (CAN controller with new settings)
ret = CMA_Startup (ucCANHandle);

See Also

4.2.3 Start-up and Shutdown of the CANopen Client
6.25 CMA_StartUp

92 Function Reference

6.6 CMA_ConfigSyncMan

Description

CMA_ConfigSyncMan configures the SYNC Manager of the
CANopen Client.

The identifier of the SYNC object ulSyncID and its cycle period
in μs ulSyncCycle are defined in the parameter structure
stSyncManConfig.

If the Client is configured as SYNC producer by
ucSendMode=1 the SYNC object is sent periodically until the
SYNC manager is reconfigured with ucSendMode=0.

If the Client application is intended to transfer synchronous
PDOs the consumer mode has to be enabled setting
ucConsumerMode=1.

The Client can act as a SYNC producer and consumer at the
same time.

Application Notes

During the start-up of the Client the SYNC manager is
automatically configured to the default settings. Thus, it neither
produces nor consumes any SYNC object. For definition and
start of the SYNC handling CMA_ConfigSyncMan can be
called at any time after the successful Client start-up.

The default COB-ID of the SYNC object is defined to 0x80 by
the Predefined Connection Set of CANopen [CiA 301] but can
be changed at customer’s choice.

Function Call

short CMA_ConfigSyncMan(

 unsigned char ucChannelHandle
CMA_SyncManConfig stSyncManConfig);

Function Reference 93

Parameter List

typedef struct
{
 unsigned char ucSendMode;
 unsigned char ucConsumerMode;
 unsigned long ulSyncID;
 unsigned long ulSyncCycle;
} CMA_SyncManConfig;

Parameter Description
ucChannelHandle CAN channel handle returned by

CMA_InitializeCard.
SYNC producer mode of the Client

1: Client sends the SYNC
object.

ucSendMode

0: Client does not send the
SYNC object. (default)

SYNC consumer mode of the Client.
1: Client consumes the SYNC

object (necessary for handling
of synchronous PDOs).

ucConsumerMode

0: Client doesn’t consume the
SYNC object

COB-ID of the SYNC ulSyncID
Default: 0x80

Period [μs] of the cyclic transmission of
the SYNC object.
(resolution 1μs)

Default: 0

ulSyncCycle

Maximum: 32767000

94 Function Reference

Function Return Code

Return
Code

Description

0: Function completed successfully.
-103: Function timeout.
-105: ucChannelHandle not defined.
-110: COB-ID invalid or already assigned to another

object.
-111: Parameter error: ulSyncCycle > 32767000

Related Events

None.

Example

PDOTransfer.c

See Also

4.4.1 PDO Buffer Configuration
4.4.2 PDO Services
6.15 CMA_InstallPDO_E
6.26 CMA_WritePDO
6.18 CMA_ReadPDO

Function Reference 95

6.7 CMA_GetVersion

Description

CMA_GetVersion provides version information of the applied
hardware and software to the application:

- Name of the applied hardware

- Serial number of the hardware

- Hardware revision

- Software version

Application Notes

CMA_GetVersion can be called at any time after hardware
initialization by CMA_InitializeCard.

The hardware revision number is split into a main and a sub
number. The software version of the CANopen Client API is
split into a major, a minor and a build number.

Function Call

short CMA_GetVersion(

 unsigned char ucChannelHandle ,
CMA_VersionStruct *stpVersion);

typedef struct
{

 unsigned long ulHWSerialNumber;
 unsigned char ucHWMainRevision;
 unsigned char ucHWSubRevision;
 unsigned char ucHWIdentString[18];
 unsigned char ucSWMajorVersion;
 unsigned char ucSWMinorVersion;
 unsigned char ucSWBuild;

 } CMA_VersionStruct;

96 Function Reference

Parameter List

Parameter Description
ucChannelHandle CAN channel handle returned by

CMA_InitializeCard.
ulHWSerialNumber Serial number of the CAN interface.

Example: 094305678
ucHWMainRevision Hardware revision number -

Main number
Example: 1.**

ucHWSubRevision Hardware revision number -
Sub number
Example: *.01

ucHWIdentString[18] Hardware name.
Example: CAN-AC1-PCI, CANpro
USB

ucSWMajorVersion Software version number -
Main number
Example: 1.**

ucSWMinorVersion Software version number -
Sub number
Example: *.10

ucSWBuild Software version number -
Build number
Example: 4

Function Return Code

Return
Code

Description

0: Function completed successfully.
-105: ucChannelHandle not defined.

Function Reference 97

6.8 CMA_InitializeCard

Description

CMA_InitializeCard allocates the specified CAN channel. It
provides a handle to the CAN channel.

The CAN channel is selected by its channel name. This name
can be defined using the Softing CAN Interface Manager
(Click Start – All Programs – Softing CAN – Runtime System
Configuration – Softing CAN Interface Manager).

Application Notes

CMA_InitializeCard is a mandatory initialization call before any
usage of other API functions.

If the function fails the returned error code provides useful
information about the error cause.

The returned CAN channel handle is only valid if the function
returns without error.

Function Call

short CMA_IntializeCard(

 unsigned long ulDeviceIndex,
 unsigned char ucCANFunctionality,
 unsigned char *ucpCANHandle,
 unsigned char ucLicense,
 unsigned char *pChannelName
);

98 Function Reference

Parameter List

Parameter Description
Device index.
FFFFFFFFH: Search by

ChannelName

ulDeviceIndex

others: Not valid.
CAN channel operation mode

1: CANopen Client mode
ucCANFunctionality

others: Not valid
ucpCANHandle Returned handle for CAN access

(starting with 0 for the first channel)
License type ucLicense

0: dummy
pChannelName Name of CAN channel to be used

Function Return Code

Return
Code

Description

0: Function completed successfully, CAN access
provided.

-100: For compatibility only.
-101: For compatibility only.
-102: EEPROM access error
-103: Function timeout.
-104: Parameter error in ucCANFunctionality or in

ucCANFunctionality.
-500: For compatibility only.

Function Reference 99

-501: Not enough memory to register the interface.
-502: Driver not found.
-503: False driver version.
-504: False driver DLL version.
-505: Internal error: Functionality not supported.
-506: Internal error: Illegal driver call.
-507: Internal error: Driver call was cancelled.
-508: Internal error: Driver call still pending.
-509: Internal error: Driver call timeout.
-510: Internal error: General driver call error.
-511: Internal driver error.
-512: No CAN device found.
-513: Unknown device.
-514: Device already registered by the driver.
-515: Device already opened.
-516: Resources already in use (DPRAM, IRQ, I/O).
-517: Resource conflict
-518: Resource access error.
-519: Internal error: Invalid memory access.
-520: Internal error: To many I/O ports requested..
-521: Internal error: Invalid resource access
-522: Driver DLL not found.
-523: Interface could not be registered.
-524: Invalid interrupt number or interrupt not available.
-550: Internal error: Handle invalid.

>0: For compatibility only.

100 Function Reference

Related Events

None.

Example

static unsigned char ucCANHandle;

static unsigned char ChannelName[] = "CANpro USB_1";

CMA_InitializeCard (0xFFFFFFFF, 1, &ucCANHandle, 0,
ChannelName);

See Also

4.2 Initialization
6.4 CMA_CloseCard

Function Reference 101

6.9 CMA_InitBlockDownload

Description

CMA_InitBlockDownload starts the block download of an SDO
to the Object Dictionary of the CANopen node addressed by
Node-ID ucNodeID. The SDO is referenced by its index and
sub-index as defined in the Predefined Connection Set [CiA
301].

The CANopen Client API autonomously performs the block
SDO download protocol for the supplied data.

Successful block SDO downloads are confirmed by the event
DownloadCompleted in the Event-FIFO.

Timeout control

The SDO transfer is observed by timers configured by
CMA_InitSDOMan. A timeout results in an SDOError event in
the Event-FIFO:

If necessary the SDO download can be aborted by the
application calling CMA_AbortSDOTransfer:

Possible SDO transfer errors are signalled by the SDOError
event including the error code (see Appendix A).

Application Notes

Calling CMA_InitBlockDownload requires an active Client
(CMA_Startup).

The block SDO transfer uses the default SDOs defined by the
Predefined Connection Set [CiA 301] only.

102 Function Reference

Function Call

short CMA_InitBlockDownload(

 unsigned char ucChannelHandle ,
unsigned char ucNodeID,
unsigned short usIndex,
unsigned char ucSubIndex,
unsigned long ulTotalDataSize,
unsigned char *ucpData);

Parameter List

Parameter Description
ucChannelHandle CAN channel handle returned by

CMA_InitializeCard.
Node-ID of the target device.

0: CANopen Client
ucNodeID

1-127: Target Node-ID
(Client ID possible)

usIndex SDO index in the object dictionary.
ucSubIndex SDO subindex in the object dictionary.
ulTotalDataSize Number of bytes.
ucpData Pointer to the data buffer.

Function Return Code

Return
Code

Description

0: Function completed successfully. Command
posted to the Command FIFO.

-105: ucChannelHandle not defined.
-117: Command FIFO is full.

Function Reference 103

Related Events

Event Description
DownloadCompleted SDO download successfully

completed.
SDOError Error during SDO transfer

(including error code).

Example

SDODownload.c

See Also

4.3 SDO Transfer
4.3.2 SDO Download
6.14 CMA_InitSDOMan
6.1 CMA_AbortSDOTransfer
6.15 CMA_ReadEvent

104 Function Reference

6.10 CMA_InitBlockUpload

Description

CMA_InitBlockUpload starts the block upload of an SDO from
the Object Dictionary of the CANopen node addressed by
Node-ID ucNodeID. The SDO is referenced by its index and
sub-index as defined in the Predefined Connection Set [CiA
301].

The data segments are uploaded using the block SDO transfer
protocol. The maximum number of data segments within a
confirmed block is determined by the parameter ucBlockSize.
The CANopen Client API autonomously takes care about
buffering the uploaded data. The successful upload is
confirmed by the event UploadCompleted in the Event-FIFO.
The event contains length information about the uploaded
data. The uploaded data then need to be read by the
application program calling CMA_ReadData.

Timeout control

The SDO transfer is observed by timers configured by
CMA_InitSDOMan. A timeout results in an SDOError event in
the Event-FIFO:

If necessary the SDO upload can be aborted by the
application calling CMA_AbortSDOTransfer:

Possible SDO transfer errors are signalled by the SDOError
event including the error code (see Appendix A).

Application Notes

Calling CMA_InitBlockUpload requires an active Client
(CMA_Startup).

The SDO transfer uses the default SDOs defined by the
Predefined Connection Set [CiA 301] only.

Only one block SDO upload per Node-ID may be active at a
time. SDO uploads for different Node-IDs can take place in
parallel.

Function Reference 105

The parameter ucBlockSize is just supplied as information to
the protocol engine inside the CANopen Client API for proper
handling of the SDO block upload. It does not limit the total
data lengths of the upload.

The CANopen Client API dynamically allocates memory for
buffering uploaded data of the SDO block transfer.

Function Call

short CMA_InitBlockUpload(

 unsigned char ucChannelHandle ,
unsigned char ucNodeID,
unsigned short usIndex,
unsigned char ucSubIndex,
unsigned char ucBlockSize);

Parameter List

Parameter Description
ucChannelHandle CAN channel handle returned by

CMA_InitializeCard.
Node-ID of the target device.

0: CANopen Client
ucNodeID

1-127: Target Node-ID
(Client ID possible)

usIndex SDO index in the object dictionary.
ucSubIndex SDO subindex in the object dictionary.
ucBlockSize Maximum number of data segments

within a confirmed block.

106 Function Reference

Function Return Code

Return
Code

Description

0: Function completed successfully. Command
posted to the Command FIFO.

-105: ucChannelHandle not defined.
-117: Command FIFO is full.

Related Events

Event Description
UploadCompleted SDO upload successfully

completed.
SDOError Error during SDO transfer

(including error code).

Example

SDOUpload.c

See Also

4.3 SDO Transfer
4.3.3 SDO Upload
6.14 CMA_InitSDOMan
6.1 CMA_AbortSDOTransfer
6.15 CMA_ReadEvent
6.16 CMA_ReadData

Function Reference 107

6.11 CMA_InitDownload

Description

CMA_InitDownload starts the download of an SDO to the
Object Dictionary of the CANopen node addressed by Node-
ID ucNodeID. The SDO is referenced by its index and sub-
index as defined in the Predefined Connection Set [CiA 301].

The CANopen Client API evaluates the data length
ulTotalDataSize and decides autonomously if the data fit into
an expedited SDO download or if a segmented SDO download
protocol is required.

Successful SDO downloads, regardless of their type
(expedited or segmented) are confirmed by the event
DownloadCompleted in the Event-FIFO.

Timeout control

The SDO transfer is observed by timers configured by
CMA_InitSDOMan. A timeout results in an SDOError event in
the Event-FIFO:

If necessary the SDO download can be aborted by the
application calling CMA_AbortSDOTransfer:

Possible SDO transfer errors are signalled by the SDOError
event including the error code (see Appendix A).

Application Notes

Calling CMA_InitDownload requires an active Client
(CMA_Startup).

The SDO transfer uses the default SDOs defined by the
Predefined Connection Set [CiA 301] only.

108 Function Reference

Function Call

short CMA_InitDownload(

 unsigned char ucChannelHandle ,
unsigned char ucNodeID,
unsigned short usIndex,
unsigned char ucSubIndex,
unsigned long ulTotalDataSize,
unsigned char *ucpData);

Parameter List

Parameter Description
ucChannelHandle CAN channel handle returned by

CMA_InitializeCard.
Node-ID of the target device.

0: CANopen Client
ucNodeID

1-127: Target Node-ID
(Client ID possible)

usIndex SDO index in the object dictionary.
ucSubIndex SDO subindex in the object dictionary.
ulTotalDataSize Number of bytes.
ucpData Pointer to the data buffer.

Function Return Code

Return
Code

Description

0: Function completed successfully. Command
posted to the Command FIFO.

-105: ucChannelHandle not defined.
-117: Command FIFO is full.

Function Reference 109

Related Events

Event Description
DownloadCompleted SDO download successfully

completed.
SDOError Error during SDO transfer

(including error code).

Example

SDODownload.c

See Also

4.3 SDO Transfer
4.3.2 SDO Download
6.14 CMA_InitSDOMan
6.1 CMA_AbortSDOTransfer
6.15 CMA_ReadEvent

110 Function Reference

6.12 CMA_InitUpload

Description

CMA_InitUpload starts the upload of an SDO from the Object
Dictionary of the CANopen node addressed by Node-ID
ucNodeID. The SDO is referenced by its index and sub-index
as defined in the Predefined Connection Set [CiA 301].

Expedited SDO transfer (≤4bytes)

If the total data size does not exceed 4 bytes the successful
upload is confirmed by the event UploadCompleted in the
Event-FIFO. The requested SDO data are included in this
event.

Segmented SDO transfer (>4bytes)

If the total data size is greater than 4 bytes the data segments
are transferred using the segmented SDO transfer protocol.
The CANopen Client API autonomously takes care about
buffering the uploaded data. The successful upload is
confirmed by the event UploadCompleted in the Event-FIFO.
The event contains length information about the uploaded
data. The uploaded data then need to be read by the
application program calling CMA_ReadData.

Timeout control

The SDO transfer is observed by timers configured by
CMA_InitSDOMan. A timeout results in an SDOError event in
the Event-FIFO:

If necessary the SDO upload can be aborted by the
application calling CMA_AbortSDOTransfer:

Possible SDO transfer errors are signalled by the SDOError
event including the error code (see Appendix A).

Application Notes

Calling CMA_InitUpload requires an active Client
(CMA_Startup).

Function Reference 111

The SDO transfer uses the default SDOs defined by the
Predefined Connection Set [CiA 301] only.

Only one segmented SDO upload per Node-ID may be active
at a time. SDO uploads for different Node-IDs can take place
in parallel.

The CANopen Client API dynamically allocates memory for
buffering uploaded data of the SDO transfer.

Function Call

short CMA_InitUpload(

 unsigned char ucChannelHandle ,
unsigned char ucNodeID,
unsigned short usIndex,
unsigned char ucSubIndex);

Parameter List

Parameter Description
ucChannelHandle CAN channel handle returned by

CMA_InitializeCard.
Node-ID of the target device.

0: CANopen Client
ucNodeID

1-127: Target Node-ID
(Client ID possible)

usIndex SDO index in the object dictionary.
ucSubIndex SDO subindex in the object dictionary.

112 Function Reference

Function Return Code

Return
Code

Description

0: Function completed successfully. Command
posted to the Command FIFO.

-105: ucChannelHandle not defined.
-117: Command FIFO is full.

Related Events

Event Description
UploadCompleted SDO upload successfully

completed.
SDOError Error during SDO transfer

(including error code).

Example

SDOUpload.c

See Also

4.3 SDO Transfer
4.3.3 SDO Upload
6.14 CMA_InitSDOMan
6.1 CMA_AbortSDOTransfer
6.15 CMA_ReadEvent
6.16 CMA_ReadData

Function Reference 113

6.13 CMA_InitNodeMan

Description

CMA_InitNodeMan initializes the node manager by means of
determining the Node-ID of the CANopen Client. The chosen
Node-ID is buffered in the CANopen Client API and assigned
to the Client by the next start-up (CMA_Startup).

Application Notes

CMA_InitNodeMan can be called at any time after initialization
of the CAN channel (CMA_InitializeCard) but the defined
values are set into effect after the next Client start-up by
CMA_Startup.

The function is applied optionally. If it is omitted the Node-ID of
the Client is automatically set to 127. Apart from this Node-ID
the Client always can be addressed by the API using
the reserved Node-ID 0.

Function Call

short CMA_InitNodeMan(

 unsigned char uChannelHandle
unsigned char ucNodeID);

Parameter List

Parameter Description
ucChannelHandle CAN channel handle returned by

CMA_InitializeCard.
Node-ID of the CANopen Client

Range: [1..127]
ucNodeID

Default: 127

114 Function Reference

Function Return Code

Return
Code

Description

0: Function completed successfully.
-103: Function timeout.
-105: ucChannelHandle not defined.
-109: Invalid Node-ID.

Related Events

None.

Example

// Configuration of the Node Manager with Node-ID=10
// ucCANHandle returned by previous CMA_InitializeCard

ret = CMA_InitNodeMan (ucCANHandle, 10);

// start-up Client with new settings
ret = CMA_Startup (ucCANHandle);

See Also

4.2 Initialization
6.8 CMA_InitializeCard
6.25 CMA_StartUp

Function Reference 115

6.14 CMA_InitSDOMan

Description

This function initializes the timeout parameters of the SDO
Manager. The parameter values are buffered in the CANopen
Client API and are assigned to the SDO manager during the
start-up of the CANopen Client (CMA_Startup).

Parameter ucSDOTimeout is the time in ms the CANopen
Client waits for a Slave response to an SDO request.
Parameter usApplTimeoutFactor is only a dummy for
compatibility with earlier versions.

Application Notes

CMA_InitSDOMan can be called at any time after initialization
of the CAN channel (CMA_InitializeCard) but the defined
values are set into effect after the next Client start-up by
CMA_Startup.

The function can be applied optionally. If it is omitted the SDO
manager is initialized with the default settings during the
CANopen Client start-up.

Function Call

short CMA_InitSDOMan(

 unsigned char ucCANChannel,
unsigned short usSDOTimeout,
unsigned short usApplTimeoutFactor);

116 Function Reference

Parameter List

Parameter Description
ucChannelHandle CAN channel handle returned by

CMA_InitializeCard.
Timeout [ms] of the Slave response
to an SDO request of the Client.
Range: [1...65535*)]

usSDOTimeout

default: 2000
Prolongation factor of
usSDOTimeout
Only for compatibility reasons with
earlier versions of this API.
Should be set to 1

Range: [1...65535*)]

usApplTimeoutFactor

default: 1
*)Restriction: usSDOTimeout * usApplTimeoutFactor ≤ 65535

Function Return Code

Return
Code

Description

0: Function completed successfully.
-103: Function timeout.
-105: ucChannelHandle not defined.
-107: Maximum of 65535 ms exceeded.
-108: Timeout parameter out of range.

Function Reference 117

Related Events

None.

Example

// Configuration of SDO manager with
// timeout = 1 s and a prolongation factor of 1

usSDOTimeout = 1000;
usApplTimeoutFactor=1);

ret = CMA_InitSDOMan (ucCANHandle, usSDOTimeout,
usApplTimeoutFactor);

// start-up Client with new settings
ret = CMA_Startup (ucCANHandle);

See Also

4.2.3 Start-up and Shutdown of the CANopen Client
4.3 SDO Transfer
6.8 CMA_InitializeCard
6.25 CMA_StartUp
6.9 CMA_InitBlockDownload
6.10 CMA_InitBlockUpload
6.11 CMA_InitDownload
6.12 CMA_InitUpload

118 Function Reference

6.15 CMA_InstallPDO_E

Description

CMA_InstallPDO_E installs a PDO object in the CANopen
Client API.

Overall, 512 transmit PDO objects (TPDOs) and 512 receive
PDO objects (RPDOs) are configurable

The function returns the handle to the PDO object
uspPDOHandle which is required for the PDO access
functions.

In the parameter structure stPDOConfig_E the COB-ID
ulCOBID and the transmission type ucTransType of the PDO
are defined. Initial values of the PDO data are configured by
ucaDefVal and ucNrOfByte.

If an installed RPDO is received the CANopen Client API
informs the application by the event PDOReceived in the
Event-FIFO and triggers an interrupt event to the application.
The notification of the application about the reception of an
RPDO can be switched on/off individually for each RPDO by
ucEventNotify.

Installed PDOs are removed either individually by
CMA_RemovePDO or globally by CMA_Startup and
CMA_Shutdown.

Application Notes

Installing a PDO requires an active Client (CMA_Startup).

If an asynchronous TPDO is installed and the Client is in
OPERATIONAL state CMA_InstallPDO_E transmits the PDO
with its initial data. Similarly, if the Client is switched from
PRE-OPERATIONAL to OPERATIONAL state all previously
installed TPDOs are sent once. The initial transmission of
TPDO data may be suppressed by the parameter
ucNoInitTrans.

Function Reference 119

The parameters ucAccType and usEventTimer are dummies
intended to be used in future API versions.

The PDO transmission type ucTransType conforms to the pre-
definitions of the PDO type number in the CANopen
specification (see Table 6-1).

Table 6-1: PDO transmission type

PDO transmission Transmission
type cyclic acyclic sync. async. RTR

only
0 X X

1-240 X X
241-251 reserved

252 X X
253 X X
254 X
255 X

Function Call

short CMA_InstallPDO_E(

 unsigned char ucChannelHandle,
CMA_PDOConfig_E stPDOConfig_E,
unsigned short *uspPDOHandle);

120 Function Reference

Parameter List

typedef struct
{
 unsigned char ucPDOType;
 unsigned long ulCOBID;
 unsigned char ucTransType;
 unsigned char ucAccType;
 unsigned char ucEventNotif;
 unsigned char ucaDefVal[8];
 unsigned short usEventTimer;
 unsigned char ucNrOfByte;
 unsigned char ucNoInitTrans;

} CMA_PDOConfig_E;

Parameter Description
ucChannelHandle CAN channel handle returned by

CMA_InitializeCard.
uspPDOHandle Returned handle to the PDO object.

The handle is used by other PDO
functions.
PDO type.

0: RX-PDO
ucPDOType

others: TX-PDO
ulCOBID COB-ID used by the PDO.
ucTransType Transmission/reception type of the

PDO defined in [CiA 301]
(see Table 6-1).
Dummy for future use.

0: default
ucAccType

others: Invalid.

Function Reference 121

Parameter Description
Enable event PDOReceived to the
application if the RPDO is received.

0: No event in Event-FIFO.

ucEventNotif

others: Event PDOReceived enabled.
ucaDefVal[8] Array with initial values of the PDO

data.
Dummy for future use.

0: default
usEventTimer

others: Invalid.
ucNrOfByte Number of data bytes of the PDO.
ucNoInitTrans Inhibit flag for initial PDO transmission.

0: Initial transmission is active.
others: No initial transmission

Function Return Code

Return
Code

Description

0: Function completed successfully.
-103: Function timeout.
-105: ucChannelHandle not defined.
-110: COB-ID invalid or already assigned to another

object.
-113: Client not active. Start-up required.
-125 Parameter ucAccType invalid (must be 0).

122 Function Reference

Related Events

Event Description
PDOReceived RPDO received.

PDO handle, data length and values
are provided by the event.

Example

PDOTransfer.c

See Also

4.4 PDO Transfer
6.20 CMA_RemovePDO

Function Reference 123

6.16 CMA_ReadData

Description

CMA_ReadData reads uploaded SDO data after the
completion of an SDO upload regardless of its type
(segmented, block or expedited).

The CANopen Client API provides the uploaded data by
entering them into an application supplied buffer.

Application Notes

CMA_ReadData can be called at any time after a successful
SDO upload, i.e. the occurrence of event UploadCompleted in
the Event-FIFO.

For each Node-ID there is a single internal buffer that is used
by the CANopen Client API for buffering SDO uploads. For a
given Node-ID only the latest SDO upload data are available.
All data of earlier uploads are overwritten by succeeding
uploads from that node.

Uploaded data can only be read if SubIndex and Index match
the information given in the event data of the event
UploadCompleted.

The application supplied data buffer must be large enough to
carry the number of bytes indicated by the parameter
ulDataLenSegmented in the event UploadCompleted.

Function Call

short CMA_ReadData(

 unsigned char ucChannelHandle,
unsigned char ucNodeID,
unsigned char ucSubIndex,
unsigned short usIndex,
unsigned long ulBufferSize,
unsigned char *pData);

124 Function Reference

Parameter List

Parameter Description
ucChannelHandle CAN channel handle returned by

CMA_InitializeCard.
Node-ID of the device from which
uploaded data are to be read.

0: CANopen Client

ucNodeID

1-127: Target Node-ID
(Client ID possible)

ucSubIndex SDO subindex in the object dictionary.
usIndex SDO index in the object dictionary.
ulBufferSize Size of the buffer pointed to by pData.
pData Pointer to the data buffer.

Function Return Code

Return
Code

Description

0: Function completed successfully.
-105: ucChannelHandle not defined.
-119: ulBufferSize is too small for current data.
-120: usIndex does not match the index of the buffered

data.
-121: ucSubIndex does not match the subindex of the

buffered data.
-135: An active upload for the specified Node-ID is in

progress.

Function Reference 125

Related Events

None.

Example

SDOUpload.c

See Also

4.7 API Events and Event-FIFO
4.3 SDO Transfer
4.3.3 SDO Upload

6.10 CMA_InitBlockUpload
6.12 CMA_InitUpload
6.14 CMA_InitSDOMan
6.15 CMA_ReadEvent

126 Function Reference

6.17 CMA_ReadEvent

Description

CMA_ReadEvent reads the next CANopen Client event from
the Event-FIFO.

Type and data of the event are provided in the returned
parameter structure *stpEvent (see section 4.7.2).

Application Notes

CMA_ReadEvent can be called at any time after the
initialization of the CAN channel by CMA_InitializeCard.

If an interrupt event is installed (see section 0) this interrupt is
triggered on every occurrence of an event. Thus, the
application can read the Event-FIFO within a thread.
Otherwise, the Event-FIFO must be polled for new events.

Function Call

short CMA_ReadEvent(

 unsigned char ucChannelHandle,
CMA_EventStruct *stpEvent);

Parameter List

typedef struct
{
 unsigned char ucEventType;
 unsigned long ulTimeStamp;
 unsigned char ucaEventData[16];
 unsigned long ulDataLenSegmented;

} CMA_EventStruct;

Function Reference 127

Parameter Description
ucChannelHandle CAN channel handle returned by

CMA_InitializeCard.
Event type (see section 4.7.1)

0: NoEvent
3: DownloadCompleted
5: UploadCompleted

11: EMCYReceived
15: ErrorEvent
30: NextDownloadSegment (for

compatibility only)
31: NextUploadSegment (for

compatibility only)
32: PDOReceived
33: ShutdownCompleted

ucEventType

34: StartupCompleted
ulTimeStamp Not implemented yet (invalid).
ucaEventData Event related data of interest.

(see section 4.7.2)
ulDataLenSegmented Length information in case of the

event UploadCompleted

Function Return Code

Return
Code

Description

0: Function completed successfully.
-105: ucChannelHandle not defined.
-131: Unknown event in Event-FIFO.

128 Function Reference

Related Events

None.

Example

SDODownload.c
SDOUpload.c
PDOTransfer.c

See Also

4.7 API Events and Event-FIFO
6.23 CMA_SetIntEvent

Function Reference 129

6.18 CMA_ReadPDO

Description

CMA_ReadPDO reads the current data of the RPDO or TPDO
referenced by ucPDOHandle.

The PDO data are copied to the first 8 data bytes of the data
array referenced by ucpData.

Application Notes

Reading the PDOs requires the CANopen Client to be active
(CMA_Startup) and a valid PDO handle ucPDOHandle
previously provided by CMA_InstallPDO_E.

If the PDO was not transferred yet the data are equal to the
initial data set by CMA_InstallPDO_E.

Function Call

short CMA_ReadPDO(

 unsigned char ucChannelHandle,
unsigned short usPDOHandle,
unsigned char *ucpData);

Parameter List

Parameter Description
ucChannelHandle CAN channel handle returned by

CMA_InitializeCard.
usPDOHandle PDO handle provided by

CMA_InstallPDO_E.
ucpData Pointer to the PDO data array.

130 Function Reference

Function Return Code

Return
Code

Description

0: Function completed successfully.
-103: Function timeout.
-105: ucChannelHandle not defined.
-126: PDO handle not valid.
-129: Error accessing PDO

Related Events

None.

Example

PDOTransfer.c

See Also

4.4 PDO Transfer
4.4.2 PDO Services
6.15 CMA_InstallPDO_E
6.20 CMA_RemovePDO
6.27 CMA_WritePDO
6.28 CMA_WritePDOBit
6.22 CMA_SendRemotePDO

Function Reference 131

6.19 CMA_RemoveNode

Description

CMA_RemoveNode switches the Slave ucNodeID to the state
ucState and removes it from the node list of the node
manager.

Application Notes

CMA_RemoveNode requires an active CANopen Client and a
valid Node-ID introduced by CMA_AddNode.

Function Call

short CMA_RemoveNode(

 unsigned char ucChannelHandle ,
unsigned char ucNodeID,
unsigned char ucState);

Parameter List

Parameter Description
ucChannelHandle CAN channel handle returned by

CMA_InitializeCard.
Node-ID of the Slave node. ucNodeID

Range: [1-127] except Node-ID of
the Client.

Requested state of the Slave node
after removing it.

4: STOPPED (for compatibility
with CiA 301 V3.0 also
called “PREPARED”)
(Stop Remote Node)

5: OPERATIONAL
(Start Remote Node)

ucState

6: RESET APPLICATION
(Reset Node)

132 Function Reference

7: RESET COMMUNICATION
(Reset Communication)

127: PRE-OPERATIONAL
(Enter Pre-operational)

Function Return Code

Return
Code

Description

0: Function completed successfully.
-103: Function timeout.
-105: ucChannelHandle not defined.
-109: ucNodeID not valid or not defined by

CMA_AddNode.
-113: Client not active. Start-up required.
-114: Requested state ucState is not defined.
-115: Transmit queue is full. Transmission of the state

change request unsuccessful.

Related Events

None.

Example

NMTServices.c

See Also

4.6 NMT Services
4.6.1 Node Manager Configuration
6.2 CMA_AddNode

Function Reference 133

6.20 CMA_RemovePDO

Description

CMA_RemovePDO removes an installed TPDO or RPDO.

Application Notes

Removing the PDO requires the CANopen Client to be active
(CMA_Startup) and a valid PDO handle ucPDOHandle
previously provided by CMA_InstallPDO_E.

CMA_Shutdown as well as a calling CMA_Startup again will
remove all PDOs globally.

Function Call

short CMA_RemovePDO(

 unsigned char ucChannelHandle
unsigned short usPDOHandle);

Parameter List

Parameter Description
ucChannelHandle CAN channel handle returned by

CMA_InitializeCard.
usPDOHandle PDO handle provided by

CMA_InstallPDO_E.

Function Return Code

Return
Code

Description

0: Function completed successfully.
-103: Function timeout.
-105: ucChannelHandle not defined.
-113: Client not active. Start-up required.
-126: PDO handle not valid.

134 Function Reference

Related Events

None.

Example

PDOTransfer.c

See Also

4.4 PDO Transfer
4.4.1 PDO Buffer Configuration
6.15 CMA_InstallPDO_E

Function Reference 135

6.21 CMA_RequestGuarding

Description

CMA_RequestGuarding starts or stops the guarding /
heartbeat supervision of the Slave node with Node-ID
ucNodeID. Also the heartbeat production of the Client is
controlled by this function. Controlling all nodes by a single
function call is possible (Node-ID = 128).

The guarding / heartbeat parameters are individually
configured by CMA_AddNode.

If the guarding fails the application is informed by event
GuardError in the Event-FIFO.

Application Notes

CMA_RequestGuard requires an active Client (CMA_Startup)
and a valid Node-ID introduced by CMA_AddNode.

Guarding and Heartbeat supervision of the Client itself is not
possible. Only Heartbeat production of the Client can be
controlled by this function.

Function Call

short CMA_RequestGuarding(

 unsigned char ucChannelHandle ,
unsigned char ucNodeID,
unsigned char ucReqGuard);

136 Function Reference

Parameter List

Parameter Description
ucChannelHandle CAN channel handle returned by

CMA_InitializeCard.
[1-127]: Slave Node-ID or

Client Node-ID for Heartbeat
production

ucNodeID

128: All nodes
Start/Stop flag.

0: Stop guarding / Heartbeat
(supervision).

ucReqGuard

others: Start guarding/ Heartbeat
(supervision).

Function Return Code

Return
Code

Description

0: Function completed successfully.
-103: Function timeout.
-105: ucChannelHandle not defined.
-109: ucNodeID not valid or not defined by

CMA_AddNode.
-113: Client not active. Start-up required.
-116: Client can not be guarded

Function Reference 137

Related Events

Event Description
GuardError Guarding error occurred.

Example

NMTServices.c

See Also

4.6 Node Manager Configuration
4.6.2 Node Guarding
6.2 CMA_AddNode
6.19 CMA_RemoveNode
6.15 CMA_ReadEvent

138 Function Reference

6.22 CMA_SendRemotePDO

Description

CMA_SendRemotePDO sends a remote PDO request of the
RPDO referenced by usPDOHandle. The replied answer of
the Slave can be evaluated by the event PDOReceived in the
Event-FIFO.

Application Notes

CMA_SendRemotePDO requires an active Client
(CMA_Startup) and a valid PDO handle previously provided by
CMA_InstallPDO_E.

Function Call

short CMA_SendRemotePDO (

 unsigned char ucChannelHandle,
unsigned short usPDOHandle);

Parameter List

Parameter Description
ucChannelHandle CAN channel handle returned by

CMA_InitializeCard.
usPDOHandle PDO handle provided by

CMA_InstallPDO_E.

Function Return Code

Return
Code

Description

0: Function completed successfully.
-103: Function timeout.
-105: ucChannelHandle not defined.
-126: Invalid RPDO handle.

Function Reference 139

Related Events

None.

Example

PDOTransfer.c

See Also

4.4 PDO Transfer
4.4.2 PDO Services
6.15 CMA_InstallPDO_E
6.18 CMA_ReadPDO
6.20 CMA_RemovePDO
6.26 CMA_WritePDO
6.27 CMA_WritePDOBit

140 Function Reference

6.23 CMA_SetIntEvent

Description

CMA_SetIntEvent supplies the handle of an application
defined WIN32 event to the CANopen Client API.

If the CANopen Client API has new asynchronous information
available it informs the application by signalling the defined
WIN32 event.

Application Notes

The function is only mandatory if the application is intended to
evaluate the events in the Event-FIFO within a separate
thread. Event usage and programming are described in
section 5.2.

CMA_SetIntEvent can be called at any time after the
successful initialization of the CAN channel by
CMA_InitializeCard.

Function Call

short CMA_SetIntEvent(

 unsigned char ucChannelHandle,
HANDLE hEvent);

Parameter List

Parameter Description
ucChannelHandle CAN channel handle returned by

CMA_InitializeCard.
hEvent WIN32 event handle

Function Return Code

Return
Code

Description

0: Function completed successfully.
-105: ucChannelHandle not defined.

Function Reference 141

Related Events

None.

Example

Interrupt.c

See Also

4.2 Initialization
0 Event Processing
6.15 CMA_ReadEvent
6.8 CMA_InitializeCard

142 Function Reference

6.24 CMA_Shutdown

Description

Executing CMA_Shutdown the resources allocated by the
CANopen Client API are released and the CAN controller is
reset. The application is informed about the successful
shutdown by the event ShutdownCompleted.

Application Notes

After calling CMA_Shutdown the parameters for bit timing,
SDO transfer timeout and Node-ID are reset to their default
values which can be redefined by CMA_ConfigCANChannel,
CMA_InitNodeMan and CMA_InitSDOMan.

The function return code reports the success of the command
transfer to the CANopen Client API. It does not confirm the
success of the Client shutdown. This confirmation is reported
by the event ShutdownCompleted in the Event-FIFO.

Function Call

short CMA_Shutdown(

 unsigned char ucChannelHandle);

Parameter List

Parameter Description
ucChannelHandle CAN channel handle returned by

CMA_InitializeCard.

Function Reference 143

Function Return Code

Return
Code

Description

0: Function completed successfully. Command
posted to the Command FIFO.

-103: Function timeout.
-105: ucChannelHandle not defined.

Related Events

Event Description
ShutdownCompleted Shutdown completed successfully.

Example

// Setting baudrate to 1Mbit/s, no acceptance filter
CANConfig.ucBaudRate = 0;
ret = CMA_ConfigCANChannel (ucCANHandle, CANConfig);

// Configuration Node Manager with Node-ID=10
ret = CMA_InitNodeMan (ucCANHandle, 10);

// Configuration SDO manager with timeout = 1 s and a
// prolongation factor of 1
ret = CMA_InitSDOMan (ucCANHandle, 1000, 1);

// start-up Client with new settings
ret = CMA_Startup (ucCANHandle);

 ...

// shutdown Client with new settings
ret = CMA_Shutdown (ucCANHandle);

See Also

4.2 Initialization
6.25 CMA_StartUp

144 Function Reference

6.25 CMA_Startup

Description

CMA_Startup initializes the CANopen Client by means of

Reset, initialization and start of the CAN controller

Initialization of the SDO and the Node Manager

Sending the Client boot up message
(1792 + Node-ID)

Change of Client state to PRE-OPERATIONAL

The successful start-up is reported to the application by the
event StartupCompleted.

Bit timing, SDO transfer timeout and Node-ID of the Client are
configured with the values defined beforehand by
CMA_ConfigCANChannel, CMA_InitSDOMan and
CMA_InitNodeMan. If these functions are omitted following
default settings are used:

Data Link Layer:

Baudrate: 125 kbit/s
No acceptance filter.

Node Manager:

Client Node-ID=127
SDO Manager:

2s timeout of SDO response of a Slave.

After start-up the Client is in PRE-OPERATIONAL state, i.e.:

o Client is active on the bus.

o SDO transfers are possible.

o Guarding and SYNC may be configured and started.

o PDOs can be initialized by CMA_InstallPDO_E. PDO
transfer is not possible.

Function Reference 145

For enabling the PDO transfer the Client must be switched into
OPERATIONAL state by CMA_ChangeState.

A complete shutdown of the CANopen Client can be
performed by CMA_Shutdown.

Application Notes

CMA_Startup can be called at any time after the successful
initialization of the CAN channel by CMA_InitializeCard

The CANopen Client can be restarted by calling CMA_Startup
again. In this case the CANopen Client clears the resources
(PDO, SYNC) and restarts the CAN controller. The parameter
settings of bit timing, SDO transfer timeout and Node-ID are
preserved.

The function return code reports the success of the command
transfer to the CANopen Client API. It does not confirm the
success of the Client start-up. This confirmation is reported by
the event StartUpCompleted in the Event-FIFO.

Function Call

short CMA_Startup(unsigned char ucChannelHandle);

Parameter List

Parameter Description
ucChannelHandle CAN channel handle returned by

CMA_InitializeCard.

146 Function Reference

Function Return Code

Return
Code

Description

0: Function completed successfully. Command
posted to the Command FIFO.

-105: ucChannelHandle not defined.
-117: Command FIFO is full.

Related Events

Event Description
StartupCompleted Start-up completed successfully.

Example

// Setting baudrate to 1Mbit/s, no acceptance filter
CANConfig.ucBaudRate = 0;
ret = CMA_ConfigCANChannel (ucCANHandle, CANConfig);

// Configuration Node Manager with Node-ID=10
ret = CMA_InitNodeMan (ucCANHandle, 10);

// Configuration SDO manager with timeout = 1 s and a
prolongation // factor of 1
ret = CMA_InitSDOMan (ucCANHandle, 1000, 1);

// start-up Client with new settings
ret = CMA_Startup (ucCANHandle);

See Also

4.2 Initialization
6.5 CMA_ConfigCANChannel
6.14 CMA_InitSDOMan
6.13 CMA_InitNodeMan
6.24 CMA_Shutdown

Function Reference 147

6.26 CMA_WritePDO

Description

CMA_WritePDO refreshes the data of a TPDO referenced by
ucPDOHandle.

In case of an asynchronous TPDO the PDO is transmitted
additionally if the Client is in OPERATIONAL state.

The PDO data can be refreshed partially determining the start
byte position ucDataOffset and number of bytes ucDataSize.
The new data are referenced by ucpData.

Application Notes

Writing the PDO data requires a valid PDO handle
ucPDOHandle previously provided by CMA_InstallPDO_E.

Start byte position ucDataOffset and number of bytes
ucDataSize must meet the following condition:

If the state of the Client is switched to OPERATIONAL all
previously installed TPDOs are transmitted once automatically
if initial transmission is not inhibited (see 6.15
CMA_InstallPDO_E).

Function Call

short CMA_WritePDO(

 unsigned char ucChannelHandle ,
unsigned short usPDOHandle,
unsigned char ucDataOffset,
unsigned char ucDataSize,
unsigned char *ucpData);

ucDataOffset + ucDataSize ≤ 8

148 Function Reference

Parameter List

Parameter Description
ucChannelHandle CAN channel handle returned by

CMA_InitializeCard.
usPDOHandle PDO handle provided by

CMA_InstallPDO_E.
Byte position of the first byte of the
TPDO data where the new data are
written to.
Range: [0..7]

ucDataOffset

others: Invalid.
Number of bytes of ucpData written to
the TPDO data.
Range: [0..7] with

ucDataOffset+ucDataSize ≤ 8

ucDataSize

others: Invalid.
ucpData Pointer to the new PDO data.

Function Return Code

Return
Code

Description

0: Function completed successfully.
-103: Function timeout.
-105: ucChannelHandle not defined.
-113: Client not started (CMA_Startup).
-126: Invalid TPDO handle.
-127: Invalid byte position (>7).
-128: Invalid sum ucDataOffset+ucDataSize
-129: Error accessing PDO

Function Reference 149

Related Events

None.

Example

PDOTransfer.c

See Also

4.4 PDO Transfer
6.15 CMA_InstallPDO_E
6.19 CMA_RemovePDO
6.22 CMA_SendRemotePDO
6.27 CMA_WritePDOBit
6.18 CMA_ReadPDO

150 Function Reference

6.27 CMA_WritePDOBit

Description

CMA_WritePDOBit sets a single bit at position ucBitPosition of
the data of a TPDO to ucBitValue.

In case of an asynchronous TPDO the PDO is transmitted
additionally if the Client is in OPERATIONAL state.

Application Notes

Writing the PDO data bit requires a valid PDO handle
ucPDOHandle previously provided by CMA_InstallPDO_E.

If state of the Client is switched to OPERATIONAL all
previously installed TPDOs are transmitted once automatically
if initial transmission is not inhibited (see 6.15
CMA_InstallPDO_E).

Function Call

short CMA_WritePDOBit(

 unsigned char ucChannelHandle ,
unsigned short usPDOHandle,
unsigned char ucBitPosition,
unsigned char ucBitValue);

Function Reference 151

Parameter List

Parameter Description
ucChannelHandle CAN channel handle returned by

CMA_InitializeCard.
usPDOHandle PDO handle provided by

CMA_InstallPDO_E.
Bit position in the data of the TPDO
where the new value is written to.
Range: [0..63]

ucBitPosition

others: Invalid.
New bit value.

0: Bit value 0
ucBitValue

others: Bit value 1

Function Return Code

Return
Code

Description

0: Function completed successfully.
-103: Function timeout.
-105: ucChannelHandle not defined.
-113: Client not started (CMA_Startup).
-126: Invalid TPDO handle.
-129: Error accessing PDO
-130: Invalid bit position.

152 Function Reference

Related Events

None.

Example

PDOTransfer.c

See Also

4.4 PDO Transfer
6.15 CMA_InstallPDO_E
6.19 CMA_RemovePDO
6.22 CMA_SendRemotePDO
6.26 CMA_WritePDO
6.18 CMA_ReadPDO

Appendix A 153

Appendix A

Table A-1: SDO error class and code

Error Class Error Code Example
(05)
Service Error

(03)
Parameter inconsistent

Toggle bit error

 (04)
Illegal parameter

Timeout value
reached.

(06)
Access Error

(01)
Access unsupported.

Writing a read-only
or reading a write-
only object.

 (02)
Object not existent

Object not
included in the
dictionary.

 (04)
Mapping error (should
not happen, only for
further extensions)

 (06)
Hardware fault

Hardware access
error.

 (07)
Type conflict

Data type does not
match.

 (09)
Attribute inconsistent

Sub-index does
not exist.

(08)
Other Error

(0) Transfer aborted
by the user.

154 Appendix A

Table A-2: Additional SDO error code

Additional Error
Code

Example

00H
in combination with:

Error
Class

Error
Code

5 3 Toggle bit error.
5 4 SDO protocol timed out.
6 1 Unsupported access to an object.
6 2 Object does not exist.
6 6 Access failed due to hardware error.
8 0 General error.

01H
in combination with:

Error
Class

Error
Code

5 4 Client/Server command specifier not
valid or unknown.

6 1 Attempt to read write only object.
02H
in combination with:

Error
Class

Error
Code

5 4 Invalid block size.
6 1 Attempt to write read only object.

03H Invalid sequence number.
04H CRC error.
05H Out of memory.
10H Invalid service parameter.

Appendix A 155

11H ⇒ Sub-index not existent.
12H ⇒ Parameter length too large.
13H ⇒ Parameter length too small.
20H Service cannot be executed.
21H ⇒ due to local control.
22H ⇒ due to current state.
30H Value range exceeded
31H ⇒ Parameter value too large
32H ⇒ Parameter value too small
36H ⇒ Maximum value < minimum value
40H Incompatible to other values
41H ⇒ Data cannot be mapped to PDO.
42H ⇒ PDO length exceeded.
43H ⇒ Parameter incompatibility.
47H ⇒ Parameter incompatibility in the

device.

156 Glossary

Glossary

API Application Programming Interface

CAN Controller Area Network

CiA CAN in Automation

COB-ID Communication Object Identifier

DIP Dual-Inline Package

DPRAM Dual-Port Random Access Memory

DS Draft Standard

ISO International Standards Organization

NMT Network Management

OS Operating System

PC Personal Computer

RAM Random Access Memory

RPDO Receive Process Data Object

SDO Service Data Object

TPDO Transmit Process Data Object

Index 157

Index

API

basic data types 74
Linking...................................... 74

Baudrate............................ 22, 45, 88
Boot-up ... 20

message..................................... 66
object .. 37

Calling convention........................ 74
CANopen

device.. 17
device states 17
Master 16
network 15, 62
Slave ... 79
stack .. 9

CANopen Client
Node-ID 45
start-up 45, 46

CMA_AbortSDOTransmission54, 77
CMA_AddNode...................... 62, 79
CMA_ChangeState 65, 83
CMA_CloseCard 42, 86
CMA_ConfigCANChannel 48, 88
CMA_ConfigSyncMan........... 60, 92
CMA_GetVersion......................... 95
CMA_InitBlockDownload.......... 101
CMA_InitBlockUpload 104
CMA_InitDownload 50, 107
CMA_InitializeCard 97
CMA_InitNodeMan.............. 48, 113
CMA_InitSDOMan 48
CMA_InitUpload.................. 51, 110
CMA_InstallPDO_E............. 55, 118

CMA_ReadData123
CMA_ReadEvent67, 126
CMA_ReadPDO....................55, 129
CMA_RemoveNode..............62, 131
CMA_RemovePDO56, 133
CMA_RequestGuarding........63, 135
CMA_SendRemotePDO58, 138
CMA_SetIntEvent.................42, 140
CMA_Shutdown..........................142
CMA_Startup45, 144
CMA_WritePDO...................57, 147
CMA_WritePDOBit..............57, 150
Communication

object17, 20
profile ..15

Compatibility.................................14
Configuration Manager16

Device profile................................38

EMCY20, 37
EMCY object66
Emergency messages.....................66
Emergency object37
Event ...126

type..67
Event-FIFO67, 75, 126

Guarding errors64

Hardware driver.............................14
Hardware revision95
Heartbeat36

Import library74
Installation.....................................11

158 Index

test... 12
uninstall support........................ 13

Interrupt42, 44, 75, 140
events .. 75
programming............................. 75
service thread 76

Layer Manager.............................. 39

Module Control Services 34

Network Management............. 20, 34
NMT Master 62
NMT service 34
Node Guarding...........35, 63, 79, 135
Node list.................................. 62, 79
Node Manager 39

Object Dictionary..16, 17, 28, 38, 49,

73, 101, 104, 107, 110
OPERATIONAL 65

PDO 20, 24, 133

buffer .. 55
communication direction 24
data.................................. 147, 150
handle...................................... 133
Manager 39
remote request......................... 138
services 57
transfer services 26
transmission mode 24
transmission type 24, 57, 119
triggering mode......................... 24
type ... 24

PRE-OPERATIONAL.................. 65

Quick Start 11

RESET COMMUNICATION 65

RESET NODE65
Resources86, 142
RPDO25, 55, 129

Sample point..................................22
SDO...20, 28

abort transfer30
download28, 73
error50, 153
expedited28, 30
Manager.............................16, 115
segment28
timeout.......................................49
transfer.......................................49
upload..73

SDO segment30
Serial number95
Software version............................95
State machine17
State transition.........................17, 83
STOPPED65
Supported systems.........................10
SYNC20, 25

Consumer33, 61, 92
cycle period60, 92
Manager...............................39, 60
object60, 92
Producer33, 60, 92

Synchronization.............................33
System requirements11

Test..12
TPDO25, 55, 129
Transmission type24

WIN32 event42, 44, 140

	Contents
	 Preface
	About this manual

	About the CANopen Client API
	1.1 Scope of Application
	1.2 Supported Systems

	2 Getting Started
	2.1 System Requirements
	2.2 Quick Start
	2.3 Installation Test
	2.3.1 Uninstall Support

	2.4 Hardware Driver Notes
	2.4.1 Driver Files
	2.4.2 Compatibility Note

	3 About CANopen [CiA 301]
	3.1 Common
	3.1.1 CANopen Network
	3.1.2 CANopen Device
	3.1.3 CANopen Communication Objects and Services

	3.2 Physical Layer
	3.3 Process Data Object (PDO)
	3.3.1 PDO Types
	3.3.2 PDO Services

	3.4 Service Data Object (SDO)
	3.4.1 SDO Download
	3.4.2 SDO Upload
	3.4.3 Abort SDO Transfer
	3.4.4 SDO Block Transfer

	3.5 Synchronization (SYNC Object)
	3.6 Network Management (NMT)
	3.6.1 Module Control Services
	3.6.2 Error Control Services
	3.6.3 Boot-up service
	3.6.4 Emergency Object (EMCY)

	3.7 Object Dictionary

	4 CANopen Client API
	4.1 Common
	4.1.1 CANopen Client API Concept
	4.1.2 Driver Concept
	4.1.3 Main Programming Sequence

	4.2 Initialization
	4.2.1 Initialization of the CAN Channel
	4.2.2 Hardware and Software Version Information
	4.2.3 Start-up and Shutdown of the CANopen Client

	4.3 SDO Transfer
	4.3.1 Common
	4.3.2 SDO Download
	4.3.3 SDO Upload
	4.3.4 Abort SDO Transfer

	4.4 PDO Transfer
	4.4.1 PDO Buffer Administration
	4.4.2 PDO Services

	4.5 Synchronization
	4.6 NMT Services
	4.6.1 Node Manager Configuration
	4.6.2 Node Guarding / Heartbeat Supervision
	4.6.3 Module State Control
	4.6.4 EMCY Object
	4.6.5 Boot-Up Service

	4.7 API Events and Event-FIFO
	4.7.1 Reading the Event-FIFO
	4.7.2 Event Types and Data

	4.8 Client Object Dictionary

	5 Programming Notes
	5.1 API Function Linking
	5.1.1 Calling Convention and Data Types

	 Event Processing
	5.1.2 Interrupt Events
	5.1.3 WIN32 Interrupt Programming

	6 Function Reference
	6.1 CMA_AbortSDOTransmission
	6.2 CMA_AddNode
	6.3 CMA_ChangeState
	6.4 CMA_CloseCard
	6.5 CMA_ConfigCANChannel
	6.6 CMA_ConfigSyncMan
	6.7 CMA_GetVersion
	6.8 CMA_InitializeCard
	6.9 CMA_InitBlockDownload
	6.10 CMA_InitBlockUpload
	6.11 CMA_InitDownload
	6.12 CMA_InitUpload
	6.13 CMA_InitNodeMan
	6.14 CMA_InitSDOMan
	6.15 CMA_InstallPDO_E
	6.16 CMA_ReadData
	6.17 CMA_ReadEvent
	6.18 CMA_ReadPDO
	6.19 CMA_RemoveNode
	6.20 CMA_RemovePDO

	 Appendix A
	 Glossary
	Index

