

Softing Industrial Automation GmbH
Richard-Reitzner-Allee 6
D-85540 Haar
Tel.: (++49) 89/4 56 56-0
Fax.: (++49) 89/4 56 56-399
http://www.softing.com

Softing CAN Layer2 Manual

Software Description

Version 5.17
April 2012

http://www.softing.com/

© Copyright Softing Industrial Automation GmbH
No part of these instructions may be reproduced or processed, copied or distributed
iin any form whatsoever without prior written permission by Softing Industrial Automation GmbH. Any
violations will lead to compensation claims.
All rights are reserved, particularly with regard to patent issue or GM registration.
The producer reserves the right to make changes to the scope of supply as well as
to technical data, even without prior notice.
Careful attention was given to the quality and functional integrity in designing,
manufacturing and testing the system. However, no liability can be assumed for
potential errors that might exist or for their effects. In particular, we cannot assume
liability in terms of suitability of the system for a particular application. Should you
find errors, please inform your distributor of the nature of the errors and the
circumstances under which they occur. We will be responsive to all reasonable ideas
and will follow up on them, taking measures to improve the product, if necessary.

Software description 1

Contents

Contents ... 1

CAN Layer 2 API - Software description... 4

1.1 Deployment..4

1.2 System requirements ..4

1.3 Driver concept ...5

1.4 Operational modes of the interface ...6
1.4.1 FIFO mode..6
1.4.2 Dynamic object buffer mode ..8
1.4.3 Static object buffer mode (only for 11-bit identifiers)12
1.4.4 Comparison FIFO to object buffer mode......................................17

1.5 Implementation ...18
1.5.1 Board initialization..18
1.5.2 FIFO mode..18
1.5.3 Object buffer mode ...20
1.5.4 Reinitialization and termination..23

1.6 Description of the CAN Layer2 API ...24
1.6.1 About the CAN Layer2 API ...24
1.6.2 Interrupt processing ..25
1.6.3 INIL2_initialize_channel ..27
1.6.4 CANL2_get_all_CAN_channels ..30
1.6.5 CANL2_set_rcv_fifo_size ..33
1.6.6 CANL2_initialize_fifo_mode ...35
1.6.7 CANL2_reset_chip ...38
1.6.8 CANL2_get_version...39
1.6.9 CANL2_get_serial_number..42
1.6.10 CANL2_initialize_chip...43

2 Software description

1.6.11 CANL2_set_output_control ... 46
1.6.12 CANL2_set_acceptance ... 50
1.6.13 CANL2_enable_dyn_obj_buf .. 52
1.6.14 CANL2_initialize_interface ... 53
1.6.15 CANL2_define_object ... 59
1.6.16 CANL2_start_chip ... 63
1.6.17 CANL2_define_cyclic.. 64
1.6.18 CANL2_send_remote_object ... 66
1.6.19 CANL2_supply_object_data .. 68
1.6.20 CANL2_supply_rcv_object_data ... 70
1.6.21 CANL2_send_object .. 72
1.6.22 CANL2_write_object ... 74
1.6.23 CANL2_read_rcv_data... 76
1.6.24 CANL2_read_xmt_data ... 78
1.6.25 CANL2_send_data ... 80
1.6.26 CANL2_send_remote... 82
1.6.27 CANL2_read_ac... 83
1.6.28 CANL2_reinitialize .. 89
1.6.29 CANL2_get_time ... 90
1.6.30 CANL2_get_bus_state ... 91
1.6.31 CANL2_reset_lost_msg_counter ... 92
1.6.32 CANL2_read_rcv_fifo_level.. 93
1.6.33 CANL2_reset_rcv_fifo... 94
1.6.34 CANL2_read_xmt_fifo_level... 95
1.6.35 CANL2_reset_xmt_fifo.. 96
1.6.36 CANL2_set_interrupt_event .. 97
1.6.37 CANL2_init_signals... 98
1.6.38 CANL2_read_signals ... 102
1.6.39 CANL2_write_signals .. 103
1.6.40 INIL2_close_channel ... 105

1.7 Description of the Softing CAN class library................................. 106
1.7.1 Interrupt processing .. 106
1.7.2 CANL2Channel::INIL2_initialize_channel 112
1.7.3 CANL2Channel::CANL2_get_all_CAN_channels.................... 115
1.7.4 CANL2Channel::CANL2_set_rcv_fifo_size 118
1.7.5 CANL2Channel::CANL2_initialize_fifo_mode 120
1.7.6 CANL2Channel::CANL2_reset_chip .. 123
1.7.7 CANL2Channel::CANL2_get_version 124

Software description 3

1.7.8 CANL2Channel::CANL2_get_serial_number............................127
1.7.9 CANL2Channel::CANL2_initialize_chip128
1.7.10 CANL2Channel::CANL2_set_output_control132
1.7.11 CANL2Channel::CANL2_set_acceptance136
1.7.12 CANL2Channel:: CANL2_enable_dyn_obj_buf138
1.7.13 CANL2Channel::CANL2_initialize_interface139
1.7.14 CANL2Channel::CANL2_define_object145
1.7.15 CANL2Channel::CANL2_start_chip ...149
1.7.16 CANL2Channel::CANL2_define_cyclic....................................150
1.7.17 CANL2Channel::CANL2_send_remote_object152
1.7.18 CANL2Channel::CANL2_supply_object_data154
1.7.19 CANL2Channel::CANL2_supply_rcv_object_data156
1.7.20 CANL2Channel::CANL2_send_object158
1.7.21 CANL2Channel::CANL2_write_object160
1.7.22 CANL2Channel::CANL2_read_rcv_data...................................162
1.7.23 CANL2Channel::CANL2_read_xmt_data..................................164
1.7.24 CANL2Channel::CANL2_send_data ...166
1.7.25 CANL2Channel::CANL2_send_remote.....................................168
1.7.26 CANL2Channel::CANL2_read_ac...170
1.7.27 CANL2Channel::CANL2_reinitialize ..174
1.7.28 CANL2Channel::CANL2_get_time ...175
1.7.29 CANL2Channel::CANL2_get_bus_state....................................176
1.7.30 CANL2Channel::CANL2_reset_lost_msg_counter177
1.7.31 CANL2Channel::CANL2_read_rcv_fifo_level..........................178
1.7.32 CANL2Channel::CANL2_reset_rcv_fifo...................................179
1.7.33 CANL2Channel::CANL2_read_xmt_fifo_level.........................180
1.7.34 CANL2Channel::CANL2_reset_xmt_fifo..................................181
1.7.35 CANL2Channel::CANL2_init_signals.......................................182
1.7.36 CANL2Channel::CANL2_read_signals186
1.7.37 CANL2Channel::CANL2_write_signals187
1.7.38 CANL2Channel::INIL2_close_channel189

Index ... 190

4 Software description

CAN Layer 2 API - Software description

The Softing CAN Interface cards can be accessed from the
user application in 2 ways.

First you can use the CAN Layer 2 API. This is a Windows
DLL available for 32bit (canL2.dll) and 64bit (canL2_64.dll)
applications. If you want to use the C language this is the right
way for you.

If you prefer to use the Microsoft .Net Framework for building
your application, you should use the .Net Softing CAN class
library (CanL2dotNET.dll) instead.

1.1 Deployment

Because the libraries CANL2.dll and CANL2dotNet.dll contain
the driver routines to access the hardware of the Softing CAN
Interface cards, it is permitted to deliver these libraries with the
customer application.

1.2 System requirements

• Microsoft Windows XP, Windows Vista, Windows 7 (32 and 64 bit),
Windows Server 2003 R2 and Windows Server 2008

• Microsoft.NET Framework Version 2.0 (for .NET class library
CANL2dotNet.dll)

• Softing CAN Interface (CAN-ACx-PCI, CAN-ACx-104, CANusb
CANcard2, CAN-PROx-PC104+, CAN-PROx-PCIe or CANpro USB)

Software description 5

1.3 Driver concept

The API functions to program the interface for CAN access
are supplied in a Windows DLL ‘canL2(_64).dll’. This library
accesses the DPRAM on the Softing CAN Interface cards via
the driver DLL ‘canchd(_64).dll’ and the hardware driver.

Softing provides alternatively a .Net class library which offers
an interface to the Microsoft .Net framework.

The hardware driver is a WDM (Windows Driver Model) device
driver.

Driver and driver DLL are placed in the system directory of the
OS. We recommend to copy the API DLL ‘CanL2.dll’ and
CANL2dotNET.dll to the local directory of the application to
prevent access errors due to existence of API DLLs of
different versions.

Fig. 1-1: Access structure of the API software

Dot Net Application
CAN

network

Application (32/64bit)

API DLL
canL2.dll / canL2_64.dll

Driver DLL
canchd.dll / canchd_64.dll

Hardware driver
canchd.sys

Firmware

PC

DPRAM

Class library
(CANL2dotNET.dll)

6 Software description

1.4 Operational modes of the interface

The Softing CAN Interface cards together with their driver
library offer two alternative operating modes handling CAN
messages: FIFO operation and CAN object buffer.
Furthermore, the object buffer can be defined as static or
dynamic.

1.4.1 FIFO mode

The communication between the CAN bus and the PC
application through the dual ported RAM is processed
sequentially using FIFOs (Fig. 1-2). The message that is
entered first into the FIFO (First In First Out), is the next to be
processed further. The FIFO size depends on the used
hardware. (see Fig. 1.2 for details)

FIFO mode is chosen calling CANL2_initialize_fifo_mode (see
Fig.1-5)

1.4.1.1 Transmission request

The ‘Transmit FIFO’ handles all transmit requests of the
application entered by CANL2_send_data.

If the Transmit FIFO gets full new transmit requests are
denied and the application is informed by the error return
code.

1.4.1.2 Receive events and transmit acknowledges

Received messages, bus events and transmit acknowledges
on successful transmission are transferred to the application
through the ‘Receive FIFO’. They can be read out of the FIFO
using CANL2_read_ac.

Software description 7

Application

API

Firmware

CAN

Transmit
requests

Transmit
request

Receive Events
Transmit ACK

Receive Events
Transmit ACK

Transmit FIFO
CANusb: 1278 entries;

CANpro USB: 4350
entries;

CAN-PROx-PC104+
and CAN-PROx-PCIe:

4095 entries;
all other devices
max. 159 entries;

Receive FIFO
CANusb =65535 entries

CANpro USB: 4095
entries;

CAN-PROx-PC104+
and CAN-PROx-PCIe

4095 entries;
all other devices
max. 143 entries;

Fig. 1-2: FIFO mode structure

8 Software description

1.4.2 Dynamic object buffer mode

The dynamic object buffer mode is chosen calling
CANL2_enable_dyn_obj_buffer (see Fig. 1-6). In this
operational mode the CAN messages and their data are
stored in 2 object lists, i.e. transmission and reception list for
each CAN channel (Fig. 1-3). Each list can bear a maximum
of 200 objects.

The entries of the lists, i.e. CAN messages of interest, have to
be defined by the application using CANL2_define_object in
the initialization routine. An object includes identifier and data
of a CAN message. The API handles the objects with their
object number which is returned by CANL2_define_object to
the application program.

It is possible at any time to read or write the data of a defined
object. Thus, the application always has a consistent
representation of a defined "CAN database".

The handling of transmission requests, received messages,
transmit acknowledges and remote frames are individually
switched on or off for each object by definition
(ReceiveIntEnable, AutoRemoteEnable, TransmitAckEnable).
The interface offers two main handling mechanisms for these
interaction tasks, FIFO or polling. They can be configured
using CANL2_initialize_interface.

1.4.2.1 Transmission requests

A transmit request is commanded by CANL2_send_object or
CANL2_write_object.

If TransmitReqFifoEnable is set in CANL2_initialize_inter-face,
the transmit request for an object is transferred to the CAN
controller through a FIFO. Otherwise, the transmit object lists
are polled for objects to be sent.

The FIFO has a maximum of 255 entries. An overrun of the
FIFO is recognized and reported to the application.

Polling is processed from low to high object numbers.

Software description 9

1.4.2.2 Transmit acknowledges

On successful transmission of an object a corresponding
acknowledge can inform the application using
CANL2_read_ac.

The acknowledges can be switched on or off for either all
objects (TransmitAckEnableAll) or for each transmit object by
definition (TransmitAckEnable).

If the transmit acknowledge FIFO is configured
(TransmitAckFifoEnable), the transmit acknowledges are
transferred through a FIFO to the application. Otherwise, the
transmit object lists are polled for acknowledged objects.

The FIFO has a maximum of 255 entries. An overrun of the
FIFO and the number of lost transmit acknowledge messages
are recognized, counted and reported to the application.

Polling is processed from low to high object numbers.

1.4.2.3 Receive events

Calling CANL2_read_ac, the application is informed about
reception of objects and other bus events.

The report of a received object and generating an interrupt to
the application can be switched on/off by definition
(ReceiveIntEnable) for filter functionality. The data of the
received object are entered into the receive object list in any
case.

If a receive FIFO is configured (ReceiveFifoEnable), the
received objects and status messages are transferred through
a FIFO to the application. Otherwise, the receive object lists
are polled for received objects.

The FIFO has a maximum of 255 entries. An overrun of the
FIFO and the number of lost messages are recognized,
counted and reported to the application.

Polling is processed from low to high object numbers.

10 Software description

1.4.2.4 Remote frames

If automatic transmission on reception of remote frames is
configured by definition for an object (AutoRemoteEnable), the
interface sends automatically a data frame with the same
identifier. Otherwise, the remote frame is inserted into the
object list and should be replied by the application.

If FIFO for auto remote transmission is configured
(TransmitRemoteFifoEnableAll), the incoming remote frames
are passed on for auto transmission through a FIFO.
Otherwise, the remote request is stored in the transmit object
lists, which are polled for transmission of data frames.

The FIFO has a maximum of 255 entries. An overrun of the
FIFO and the number of lost remote transmit requests are
recognized, counted and reported to the application.

Polling is processed from low to high object numbers.

NOTE:
The remote frame is only answered automatically after the
first call of CANL2_supply_object_data or
CANL2_write_object for the related object. This assures
that no non-initialized data are transmitted. If a remote
frame is received before the first call of
CANL2_supply_object_data or CANL2_write_object an
error is reported to the application.

Software description 11

Application

API

Transmit object
list CAN

(max. 200
entries)

Receive object
list CAN

(max. 200
entries)

Object
data

Transmit
ACK

FIFO or
Polling

FIFO or
Polling

Receive
Events

Object
data

FIFO or
Polling

Firmware

Transmit
requests

Receive
Events

CAN

Transmit
ACK

Fig. 1-3: Dynamic object buffer mode

12 Software description

1.4.3 Static object buffer mode (only for 11-bit identifiers)

The static object buffer mode is automatically chosen if none
of the other operating modes is enabled (Fig. 1-7). In that
mode the CAN messages and their data are stored in 2 object
lists, one for transmission and one for reception (see Fig. 1-4).

In contrast to the dynamic object buffer, the object lists holds
all 2048 standard CAN identifiers (11 bit format according to
CAN 2.0A spec.). The objects of these lists can be optionally
defined by the application using CANL2_define_object.
Hence, an individual configuration of the handling for each
object is possible.

It is possible to access the object data at any time. Thus, the
application always has a consistent representation of the
complete "CAN database" for all for 11 bit identifiers.

The handling of transmission requests, received messages,
transmit acknowledges and remote frames can be configured
individually by the application using
CANL2_initialize_interface. The interface offers two main
mechanisms for these interaction tasks, FIFO or polling.

Software description 13

1.4.3.1 Transmission request

A transmit request is commanded by CANL2_send_object or
CANL2_write_object.

If the transmit FIFO is configured (TransmitReqFifoEnable),
the transmit request for an object is transferred through a
FIFO to the CAN controller. Otherwise, the transmit object list
is polled for objects to be sent. This polling can be limited to
those transmit objects defined using CANL2_define_object.
Otherwise, all transmit objects are polled (TransmitPollAll).

The FIFO has a maximum of 255 entries. An overrun of the
FIFO is recognized and reported to the application.

Polling is processed from low to high identifiers.

1.4.3.2 Transmit acknowledges

On successful transmission of an object a corresponding
acknowledge can inform the application by using
CANL2_read_ac.

The acknowledges can be switched on or off for either all
objects (TransmitAckEnableAll) or for each transmit object by
definition (TransmitAckEnable).

If the transmit acknowledge FIFO is configured
(TransmitAckFifoEnable), the transmit acknowledges of an
object are transferred through a FIFO to the application.
Otherwise, the transmit object list is polled for acknowledged
objects.

The FIFO has a maximum of 255 entries. An overrun of the
FIFO and the number of lost transmit acknowledge messages
are recognized, counted and reported to the application.

Polling is processed from low to high object numbers.

14 Software description

By calling CANL2_read_ac the application is informed about
reception of objects and other bus events.

If ReceiveEnableAll is set, all data and remote frames are
received by the interface. Otherwise, the user can define the
objects to be received (CANL2_define_object).

Furthermore, the report of a received object to the application
and generation of an interrupt can be switched on/off either
globally (ReceiveIntEnableAll) or individually by definition
(ReceiveIntEnable). The data of the received object are
entered into the receive object list in any case.

If FIFO mode is configured (ReceiveFifoEnable), the received
objects and status messages are transferred through a FIFO
to the application. Otherwise, the receive object list is polled
for received messages.

The FIFO has a maximum of 255 entries. An overrun of the
FIFO and the number of lost messages are recognized,
counted and reported to the application.

Polling is processed from low to high identifiers and can be
limited to those receive objects defined using
CANL2_define_object. Then the objects are polled in
succession of their definition. Otherwise, all receive objects
are polled (ReceivePollAll).

Software description 15

1.4.3.3 Remote frames

If automatic transmission on a reception of a remote frame is
configured by definition for an object (AutoRemoteEnable) or
globally (AutoRemoteEnableAll), the interface sends
automatically a data frame with the same identifier. Otherwise,
the remote request is stored in the transmit object list, which is
polled for transmission of data frames.

If the FIFO for auto remote transmission is configured
(TransmitRemoteFifoEnableAll), the incoming remote frames
are passed on for auto transmission through a FIFO.
Otherwise, they are stored in the object list, which is polled for
transmission of data frames.

The FIFO has a maximum of 255 entries. An overrun of the
FIFO and the number of lost remote transmit requests are
recognized, counted and reported to the application.

NOTE:
The remote frame is only answered automatically after the
first call of CANL2_supply_object_data or
CANL2_write_object for the related object. This assures
that no non-initialized data are transmitted. If a remote
frame is received before the first call of
CANL2_supply_object_data or CANL2_write_object an
error is reported to the application.

NOTE:
Please note that the objects defined first are also polled
first, and in this way a higher priority and a lower polling
time is maintained relative to the objects that follow. It is
sensible to define objects in the sequence of their
identifiers in order to make prioritization of objects with
low identifiers the same as on the CAN bus. This is true
for static as well as for dynamic object buffer mode.

16 Software description

Application

API

Transmit object
list CAN

(max. 200 entries)

Receive object
list CAN

(max. 200 entries)

Object
data

Transmit
ACK

FIFO or
Polling

FIFO or
Polling

Receive
Events

Object
data

FIFO or
Polling

Firmware

Transmit
requests

CAN

Receive Events
Transmit ACK

Fig. 1-4: Static object buffer mode

Software description 17

1.4.4 Comparison FIFO to object buffer mode

The advantage of object buffer compared to FIFO operation is
that the last received data of an object are always available to
the application in all cases. Even though, if older receptions
still have not been processed, no new data are lost if an
overrun of the object received message FIFO occurs.

When the transmit request FIFO is full the data can be
buffered, and the application is freed of this task. Hence, the
transmit request is denied but the data are buffered anyway.

It is possible at any time to read out or write in the receive and
transmit objects. Thus, the application always has access to
the provided CAN database.

An additional advantage of the object buffer is that data of
objects are available to the application very quickly after they
are received from the bus, even if the application still has not
processed older messages. Accordingly, messages can be
transmitted before lower priority messages, even if the lower
priority messages were requested first. This is true if the
object buffer is operated in polling mode.

FIFO operation offers the advantage that data of an object or
an identifier are not overwritten by other received data of the
same object until they are evaluated by the application
(overrun). Therefore, when transmitting, a sequence of data
of an object can be buffered and transmitted.

Furthermore, FIFO provides full access to all identifiers
possible on CAN, even for extended identifier. No relation
between identifier and defined object number has to be
processed by the application.

18 Software description

1.5 Implementation

The Softing CAN Layer2 has to be used in a specific
sequence of instructions for proper operation.

1.5.1 Board initialization

After program start each CAN channel to be used must be
initialized by INIL2_initialize_channel.

1.5.2 FIFO mode

The function CANL2_initialize_fifo_mode is used to define all
CAN specific parameters as well as functional options for the
operation of the FIFO mode (e.g. generating
acknowledgements for the confirmation of successful
transmissions or activating the detection error frames).
The function finally places the CAN controller in operating
status. From this point onwards transmit jobs can be issued
and incoming data can be monitored.

To monitor the bus events CANL2_read_ac should be polled
or has to be implemented in an interrupt thread.

Software description 19

INIL2_initialize_channel

CANL2_read_ac

CANL2_reinitialize

CANL2_get_time

CANL2_get_bus_state

CANL2_read_xmt_fifo_level

CANL2_read_rcv_fifo_level

CANL2_reset_xmt_fifo

CANL2_reset_rcv_fifo

CANL2_reset_lost_msg_counter

INIL2_close_channel

Terminator

Start

CANL2_send_data

CANL2_send_remote

CANL2_initialize_fifo_mode

CANL2_get_version

CANL2_get_serial_number

CANL2_get_all_CAN_channels

First call the function with provided
buffer size == 0; then allocate a buffer

big enough and call the function with the
needed buffer size!

2x

CANL2_set_rcv_fifo_size
(CANusb only!)

Fig. 1-5: Flow chart programming FIFO mode

20 Software description

1.5.3 Object buffer mode

The CAN controller is placed into reset status using
CANL2_reset_chip. Then, CAN specific parameters are
initialized using CANL2_initialize_chip for the bit timing,
CANL2_set_acceptance for filtering CAN messages and
CANL2_set_output_control for the physical signal
specification.

The operating modes of object buffer are enabled using
CANL2_initialize_interface. Beforehand the object buffer can
be switched to dynamic object buffer (Fig. 1-6) by calling
CANL2_enable_dyn_obj_buf. Otherwise the static object
buffer is chosen by default (Fig. 1-7).

Object specific settings can be made by calling
CANL2_define_object. The definition is necessary in dynamic
object buffer mode but optionally in static object buffer mode.

The function CANL2_start_chip ends the initialization and puts
the CAN Interface in operating status. From this point onward
transmit jobs can be issued and incoming data can be
monitored.

To monitor the bus events CANL2_read_ac or
CANL2_read_rcv_data are polled by the application.

Software description 21

INIL2_initialize_channel

CANL2_initialize_chip

CANL2_set_acceptance

CANL2_set_output_control

CANL2_get_serial_number

CANL2_enable_dyn_obj_buf

CANL2_initialize_interface

CANL2_define_object

CANL2_start_chip

CANL2_send_object

CANL2_read_xmt_object

CANL2_supply_object

CANL2_read_rcv_object

CANL2_write_object

CANL2_supply_rcv_object

CANL2_define_cyclic

CANL2_read_ac

CANL2_reinitialize

CANL2_get_time

CANL2_get_bus_state

INIL2_close_channel

Terminator

Start

CANL2_send_remote_object

CANL2_get_version

max. 200 rcv and xmt objects can be
defined.

CANL2_reset_chip

CANL2_get_serial_number

CANL2_get_all_CAN_channels

First call the function with provided
buffer size == 0; then allocate a buffer

big enough and call the function with the
needed buffer size!

Fig. 1-6: Flow chart programming dynamic object buffer mode

22 Software description

INIL2_initialize_channel

CANL2_initialize_chip

CANL2_set_acceptance

CANL2_set_output_control

CANL2_initialize_interface

CANL2_define_object

CANL2_start_chip

CANL2_send_object

CANL2_read_xmt_object

CANL2_supply_object

CANL2_read_rcv_object

CANL2_send_remote_object

CANL2_supply_rcv_object

CANL2_read_ac

CANL2_get_version

CANL2_reinitialize

INIL2_close_channel

Terminator

Start

CANL2_write_object

CANL2_get_time

CANL2_get_bus_state

CANL2_get_version

CANL2_get_serial_number

CANL2_reset_chip

CANL2_get_all_CAN_channels

First call the function with provided
buffer size == 0; then allocate a buffer

big enough and call the function with the
needed buffer size!

Fig. 1-7: Flow chart programming static object buffer mode

Software description 23

1.5.4 Reinitialization and termination

INIL2_reinitialize stops the current online operation of the
specified CAN channel. Afterwards the operating mode and all
corresponding parameters can be set anew. When the
application program is to be ended INIL2_close_channel
should be called. This function releases the system resources
locked for the application by INIL2_initialize_channel.

Otherwise, the application may have problems to get the
handle to the DPRAM a second time without system exit (e.g.
applications with LabVIEW a.o.).

NOTE:
If INIL2_close_channel is not called at the end of
operation the handle to the DPRAM may remain locked for
the surrounding process. Thus, it can’t be accessed by a
succeeding initialization without system exit (e.g.
applications with LabVIEW).

This concerns all default exits of the application as well
as program termination by errors which occur after
successful call to INIL2_initialize_channel.

24 Software description

1.6 Description of the CAN Layer2 API

1.6.1 About the CAN Layer2 API

The CAN Layer2 API (Application Programming Interface) is
realized as a DLL for Windows.

Different operational modes of the interface can be configured:
FIFO and object buffer mode. Thus, the programmer is
enabled to adapt it to the communication task in the most
suitable way.

The CAN Layer2 API is designed to be conform to the API’s of
Softings other CAN interfaces (PCMCIA, ISA, PC/104,
PC/104plus, PCIexpress). It provides the following
functionality:

• Initialization of CAN parameters, e.g. bit rate, output control
a. o.

• Transmission and reception of data and remote frames

• Message filtering

• Acknowledgment on successful transmission (optional)

• Automatic response to remote frames (optional)

• Error state detection

• Bus state detection

• Interrupt support

• Cyclic transmission

This chapter describes the basic operational modes, functions
and program sequences of the API.

Software description 25

1.6.2 Interrupt processing

1.6.2.1 Interrupt events

For many applications it is useful to be informed by interrupt
about occurrence of CAN events. Otherwise, the Softing CAN
Interface cards must be polled for new events which requires
more PC processor time.

The firmware triggers a hardware interrupt to the PC on the
following CAN events:

• Reception of data, remote and error frames

• Acknowledge on successful transmissions if enabled

• Change of bus state

26 Software description

1.6.2.2 Windows interrupt programming

If the CAN driver detects an interrupt it triggers a Windows
event which can be evaluated by the application to control a
process or thread. Thus, an application or thread can be
created which is only processed in case of the interrupt.

As a prerequisite the interrupt event must be created by the
application. The hardware driver must be supplied with the
handle of this Windows event by API function
CANL2_set_interrupt_event. Furthermore a thread must be
created and started which gets into WAIT status until the
interrupt event is triggered by the driver. Then, the necessary
interrupt activities can be processed and the thread gets back
into WAIT status.

Before termination of the Windows process the created
resources should be released for proper operation.

The application of the Windows interrupt is exemplary
implemented in the test program ‘can_test.exe’. The interrupt
relevant functions are sampled in ‘Intexmpl.c’ in ‘Source’
directory of the installed software. This C source code
provides macro functions for initialization and termination of
the interrupt handling as well as an interrupt service thread
which may be linked to a customer application.

Software description 27

1.6.3 INIL2_initialize_channel

int INIL2_initialize_channel(
 CAN_HANDLE *ulChannelHandle,
 char *sChannelName)

Function Parameters:

Type/Name Description
CAN_HANDLE
*ulChannelHandle

OUT: handle of the channel; this
handle is needed for all other API
calls. The type “CAN_HANDLE” is
defined in the header file “canl2.h” it is
an unsigned long.

char
*sChannelName

IN: Channel name of the channel,
which should be used; must be set by
the application;

INIL2_initialize_channel enables the memory access to the
DPRAM of the Softing CAN Interface cards. Thus, it is
necessarily called before any other API function.

If the DPRAM access is denied the function returns an error
code which corresponds to the error cause.

NOTE:
If CANL2_initialize_channel fails, other API functions
should not be called since the non-initialized memory
handle may cause an access violation.

28 Software description

Function Return Codes:

0 Initialization successful
-536215551 Internal Error
-536215550 General Error
-536215546 Illegal driver call
-536215542 Driver not loaded / not installed, or device

is not plugged.
-536215541 Out of memory
-536215531 An error occurred while hooking the

interrupt service routine
-536215523 Device not found
-536215522 Can not get a free address region for

DPRAM from system
-536215521 Error while accessing hardware
-536215519 Can not access the DPRAM memory
-536215516 Interrupt does not work/Interrupt test failed!
-536215514 Device is already open
-536215512 An incompatible firmware is running on

that device
(CANalyzer/CANopen/DeviceNet firmware)

-536215511 Channel can not be accessed, because it
is not open

-536215500 Error while calling a Windows function
 -1002 Too many open channels.

-1003 Wrong DLL or driver version.

-1004 Error while loading the firmware. (This may
be a DPRAM access error)

-1 Function not successful

Software description 29

Error codes which can only occur with the CANusb interface:

-602 Unable to open USB pipe
-603 Communication via USB pipe broken
-604 No valid lookup table entry found
-611 CANusb framework initialization failed
-1005 CANusb DLL (CANusbM.dll) not found.

30 Software description

1.6.4 CANL2_get_all_CAN_channels

int CANL2_get_all_CAN_channels (
 unsigned long u32ProvidedBufferSize,
 unsigned long *pu32NeededBufferSize,
 unsigned long *pu32NumOfChannels,
 CHDSNAPSHOT *pBuffer)

This function provides information about the CAN channels in
your computer. It writes the information into the elements of
the array “ pBuffer ”.

Function Parameters:

• u32ProvidedBufferSize: (IN)

This parameter must be initialized by the user with the size of
pBuffer in Bytes.

• pu32NeededBufferSize: (OUT)

After the call of CANL2_get_all_CAN_channels the parameter
holds the needed size of pBuffer. If u32ProvidedBufferSize <
*pu32NeededBufferSize after the function call, a new pBuffer
with an appropriate size should be allocated by the user and
the function should be called again to get the information
about the channels.

• pu32NumOfChannels: (OUT)

After the call of CANL2_get_all_CAN_channels the parameter
holds the number of channels which the driver had found on
your computer.

Software description 31

• pBuffer: (OUT)

Array of CHDSNAPSHOT; It holds the information about the
CAN channels after the function call. (Channel names, type of
firmware, which is loaded on a specific channel, whether the
channel is opened by an other application or not, serial
number of the Softing CAN Interface, physical channel
number [1 or 2])

Elements of structure CHDSNAPSHOT:

• unsigned long u32Serial: [4 Bytes]

Serial number of the CAN Interface

• unsigned long u32DeviceType: [4 Bytes]

Type of Softing CAN Interface:

u32DeviceType Softing CAN Interface
5 CANcard2
7 CAN-ACx-PCI
8 CAN-ACx-PCI/DN
9 CAN-ACx-104
10 CANusb
13 CAN-PROx-PCIe
14 CAN-PROx-PC104+
15 CANpro USB
261 EDICcard2

• unsigned long u32PhysCh: [4 Bytes]

Physical channel number; The physical channel number of the
first channel on an CAN interface with 2 channels is 1, the
number of the second channel on the same interface is 2.

32 Software description

• unsigned long u32FwId: [4 Bytes]

Type of the firmware which is loaded on the channel; layer 2
firmware has the firmware id 0x01.

• BOOLEAN bIsOpen: [1 Byte]

True if the channel is opened by a process, false otherwise.

• ChannelName: (String) [80 Bytes]

The name of the channel.

The size of the CHDSNAPSHOT structure is 97 Bytes. For
every channel plugged in the Computer, 97 Bytes are needed.

There is an easy way to calculate the memory requirements. If
CANL2_get_all_CAN_channels() is called with:

u32ProvidedBufferSize == 0 and pBuffer == NULL, then
*pu32NeededBufferSize will contain the needed buffer size
after the function call.

The buffer can be allocated now and the function can be
called again with a sufficient buffer to get the required
information.

Function Return Codes:

 0: Function successful
-1: Function not successful

Software description 33

1.6.5 CANL2_set_rcv_fifo_size

int CANL2_set_rcv_fifo_size(
 CAN_HANDLE can,
 int FifoSize)

To accommodate to larger delays in processing the received
messages the Receive-FIFO in FIFO mode is configurable in
size for CANusb. CANL2_set_rcv_fifo_size must be called if
other sizes than the default size of 255 entries is to be used.

NOTE:
This function is only applicable in FIFO mode. It is only
supported by the Layer 2 API for CANusb.

Function Parameters:

- can
Channel handle (see 1.6.3)

- FifoSize

The value defines the size of the Receive-FIFO as defined in
the following table:

Value No of entries
0 255 (default)
1 511
2 1023
3 2047
4 4095
5 8191
6 16383
7 32767
8 65535

34 Software description

Function Return Codes:

 0: Function successful
-1: The FIFO size can not be changed, because the

CAN controller is already online
-102: Parameter error
-1000: Invalid channel handle

Software description 35

1.6.6 CANL2_initialize_fifo_mode

int CANL2_initialize_fifo_mode(
 CAN_HANDLE can,
 L2CONFIG *pUserCfg)

This function provides a fast and easy way to initialize a CAN
channel. After calling this function successfully, sending and
receiving of CAN messages in FIFO mode is possible.

If you don’t know exactly the appropriate values of the
elements of L2CONFIG you can configure the channel by
using the SCIM (Softing CAN Interface Manager) in the
Settings of your PC. In this case you must set the values in
L2CONFIG which you want to retrieve from SCIM to
GET_FROM_SCIM (-1).

Function Parameters:

Table 1.6-2: CANL2_initialize_fifo_mode

Name Description Range
can: Channel handle (see 1.6.3) -
pUserCfg: Pointer to a CAN layer 2

configuration
-

36 Software description

Elements of structure L2CONFIG:

Element Description Range
double fBaudrate not used, should be 0.0 0.0
long u32Prescaler Prescaler (if set to –1

then the value will be
retrieved from SCIM)

[1..32]
or
(-1)

long u32Tseg1 CAN Time segment 1 [1..16]
or (-1)

long u32Tseg2 CAN Time segment 2 [1..8]
or (-1)

long u32Sjw Sync jump with [1..4]
or (-1)

long u32Sam Number of samples [0..1]
or (-1)

long
u32AccCodeStd

Acceptance code for 11
bit Identifier

Range
of 11 bit
Id or (-
1)

long
u32AccMaskStd

Acceptance mask for
11 bit Identifier

Range
of 11 bit
Id or (-
1)

long
u32AccCodeXtd

Acceptance code for 29
bit Identifier

Range
of 29 bit
Id or (-
1)

long
u32AccMaskXtd

Acceptance mask for
29 bit Identifier

Range
of 29 bit
Id or (-
1)

long u32OutputCtrl Output Control Register [0..255]
or (-1)

Software description 37

BOOL
bEnableAck

Enable confirmation of
successfully sent CAN
message

TRUE
or
FALSE

BOOL
bEnableErrorframe

Enable the detection of
ERROR Frames on the
CAN bus.

TRUE
or
FALSE

HANDLE hEvent Handle of the Windows
event, which should be
set in case of a CAN
event.
If this value is set to –1
no interrupt mode is
possible.

-

Function Return Codes:

 0: Function successful
-1: Function not successful
-102: Wrong Parameter
-104: Timeout firmware communication
-1000: Invalid channel handle

38 Software description

1.6.7 CANL2_reset_chip

int CANL2_reset_chip(CAN_HANDLE can)

This function terminates a possible bus operation and places
the CAN chip into reset status.

After reset the bit timing, acceptance register and output
control register have to be defined before the CAN controller is
started by the related API functions.

Function Parameters:

Table 1.6-2: CANL2_reset_chip

Name Description Range
can: Channel handle (see 1.6.3) -

Function Return Codes:

 0: Function successful
-1: Function not successful
-104: Timeout firmware communication
-108: Wrong hardware; (CANcard2 or EDICcard2

with 25MHz instead of 24MHz)
-1000: Invalid channel handle

Software description 39

1.6.8 CANL2_get_version

int CANL2_get_version(

 CAN_HANDLE can,
 int *sw_version,
 int *fw_version,
 int *hw_version,
 int *license,
 int *can_chip_type);

This function provides useful information the version numbers
of hard-, soft- and firmware, license and CAN chip types of the
CAN interface.

Function Parameters:

• can:

channel handle (see 1.6.3)

• sw_version:

Pointer to the entry of the version number of driver software.

The number is encoded as *sw_version / 100 as the main
version number; *sw_version % 100 refers to the subordinate
part of the number.

• fw_version:

Pointer to the entry of the version number of the firmware.

The number is encoded as *fw_version / 100 as the main
version number; *fw_version % 100 refers to the subordinate
part of the number.

40 Software description

• hw_version:

Pointer to the entry of the version number of the hardware.

The number is encoded as *hw_version % 0x100H as the
main version number; *hw_version / 0x100H refers to the
subordinate part of the number.

Software description 41

• licence:

Pointer entry of the license type of the CAN-AC2-PCI

01H: Licensed for operation with interface software
02H: Licensed for operation with CANalyzer

software

• can_chip_type:

Pointer to entry containing the last three digits of the CAN chip
type.

can_chip_type: CAN

 5: NEC72005 (CANcard)

 161: Infineon XC161 TwinCAN

 (CAN-PROx-PC104+)

 (CAN-PROx-PCIe)

 1000: SJA1000 (CANcard-SJA)

 (CAN-AC2/PCI)

 527: Intel 82527 (CAN-AC2/527)

 200: Philips 82C200 (CAN-AC2)

Function Return Codes:

 0: Function successful
-1: Function not successful
-1000: Invalid channel handle

42 Software description

1.6.9 CANL2_get_serial_number

CANL2_get_serial_number(
 CAN_HANDLE can,
 unsigned long *SerialNumber)

Function Parameters

Can: (IN) channel handle (see 1.6.3)

SerialNumber: (OUT) serialnumber of the CAN interface

This function returns the serial number of the Softing CAN
Interface card in *SerialNumber.

Function Return Codes:

 0: Function successful
-1: Function not successful
-1000: Invalid channel handle

Software description 43

1.6.10 CANL2_initialize_chip

int CANL2_initialize_chip(
 CAN_HANDLE can,
 int presc,
 int sjw,
 int tseg1,
 int tseg2,
 int sam)

Function Parameters:

Can: channel handle (see 1.6.3)

Table 1.6-2: Bit timing parameter

Name Description Range
presc: CAN-Prescaler [1..32]
sjw: CAN-Synchronisation-Jump-Width [1..4]
tseg1: CAN-Time-Segment 1 [1..16]
tseg2: CAN-Time-Segment 2 [1..8]
sam: Number of samples [0, 1]

The function defines the bit timing (baud rate) of the CAN chip.
Parameters presc, sjw, tseg1 and tseg2 represent logical
values that are used to describe the bit timing. These values
are converted and written to the bus timing register 1 and 2 of
the Philips SJA1000.

The baud rate is calculated by the following formula, whereby
certain limit conditions must be maintained:

 fcrystal
Baud rate = ---
 2 * presc * (1 + tseg1 + tseg2)

The crystal frequency fcrystal is 16 MHz.

The limitations of the bit timing of the used CAN controllers
lead to following conditions:

44 Software description

 8 ≤ (1+ tseg1 + tseg2) ≤ 25

 tseg1 + tseg2 ≥ 2 * sjw

 tseg2 ≥ sjw

The prescaler divides the crystal frequency by presc to build
the clock cycle time Δt.

The parameter sam defines how many samples are taken to
detect the bit level.

 sam = 0 → 1 sample (high speed buses)

 sam = 1 → 3 samples (low/medium speed buses)

The sampling point is defined at the edge between time
segment 1 and time segment 2. It is recommended to place
the sampling point between 50% and 80% of the bit time. At
high baud rates the communication is more stable if the
sample is taken in the last quarter of the bit time.

The synchronization jump width is used to compensate the
time shifts between the different CAN nodes in the network. It
defines the maximum number sync of clock cycles by which
the time segment 1 may be lengthened and time segment 2
shorted during resynchronization.

NOTE
A parameter value of -1 means that the API retrieves the
used value from SCIM (Softing CAN Interface Manager).

Software description 45

Bit time

Δt

Tseg1 Tseg2

Sync.
Seg.

Sample point(s)

time

Fig. 1-8: Bit period

Table 1.6-3: Baud rate examples

baud rate presc sjw tseg1 tseg2
1 Mbaud 1 1 4 3
800 kBaud 1 1 6 3
500 kBaud 1 1 8 7
250 kBaud 2 1 8 7
125 kBaud 4 1 8 7
100 kBaud 4 4 11 8
10 kBaud 32 4 16 8

Function Return Codes:

 0: Initialization successful
-1: Function not successful
-102: Wrong parameter
-104: Timeout firmware communication
-1000: Invalid channel handle

46 Software description

1.6.11 CANL2_set_output_control

int CANL2_set_output_control (
 CAN_HANDLE can,
 int OutputControl)

Function Parameters:

- can Channel handle (see 1.6.3)

- OutputControl: Input/Output-Control-Register
[0 to FFHex or -1]

This function defines the setting of the Output Control Register
(OCR) of the CAN chip. This is used to adapt the CAN chip to
the physical bus interface being used.

If the CAN controller Philips SJA1000 is used with the CAN
High Speed interface (default) the output control register must
be set to a value of FBHex. If you like to adapt the interface to
a different bus physic consult the SJA data sheet for the
required OCR setting.

Setting the OCR=03H switches off the transmission lines Tx0
and Tx1 of the CAN controller. Thus, the Softing CAN
Interface card can’t send any data frame or any acknowledge
bit on received messages. Thus, the interface can monitor the
activities on the CAN network without influencing it.

The OCR specification of the Philips SJA1000 is described in
Table 1.6-4 to 1.6-6.

The default values for CAN High Speed can also be chosen
automatically by passing the default parameter -1 which
assures compatibility with other using CAN High Speed
Standard.

NOTE
A parameter value of (-1) means that the API retrieves the
used value from SCIM (Softing CAN Interface Manager).

Software description 47

Function Return Codes:

 0: Function successful
-1: Function not successful
-102: Wrong parameter
-104: Timeout firmware communication
-1000: Invalid channel handle

48 Software description

Output control specification of Philips SJA1000:

Table 1.6-4: Output control Philips SJA1000

Bit Function
7 OCTP1
6 OCTN1
5 OCPOL1
4 OCTP0
3 OCTN0
2 OCPOL0
1 OCMODE1
0 OCMODE0

Table 1.6-5: Output control mode of Philips SJA1000

OCMODE1 OCMODE0 Function
1 0 Normal Mode (TX0 and TX1

CAN Output)
1 1 Normal mode (Tx0 CAN Output,

TX1 Bus Clock)
0 0 not implemented
0 1 not implemented

The voltage levels at the CAN outputs TX0 and TX1 depend
on both the output configuration, which is determined by
OCTPx and OCTNx, and the output polarity, which is
determined by OCPOLx. Table 1.6-6 shows output status as
a function of these settings for Philips SJA00.

Software description 49

Table 1.6-6: Configuration of CAN output pins TX0 and TX1

Operating
Mode

O
C
T
P
x

O
C
T
N
x

O
C
P
O
L
x

TXD TPx TNx Level at TXx

FLOAT 0
0
0
0

0
0
0
0

0
0
1
1

0
1
0
1

off
off
off
off

off
off
off
off

high resistance
high resistance
high resistance
high resistance

PULL
DOWN

0
0
0
0

1
1
1
1

0
0
1
1

0
1
0
1

off
off
off
off

on
off
off
on

logic "0"
high resistance
high resistance
logic "0"

PULL UP 1
1
1
1

0
0
0
0

0
0
1
1

0
1
0
1

off
on
on
off

off
off
off
off

high resistance
logic "1"
logic "1"
high resistance

PUSH
PULL

1
1
1
1

1
1
1
1

0
0
1
1

0
1
0
1

off
on
on
off

on
off
off
on

logic "0"
logic "1"
logic "1"
logic "0"

TXx: Output pin x, x=0 for TX0, x=1 for TX1

TPx: Transistor that switches from supply voltage to TXx

TNx: Transistor that switches from TXx to ground

TXD: Data to be transmitted, 0=dominant, 1=recessive

50 Software description

1.6.12 CANL2_set_acceptance

int CANL2_set_acceptance(
 CAN_HANDLE can,
 unsigned int AccCodeStd,
 unsigned int AccMaskStd,
 unsigned long AccCodeXtd,
 unsigned long AccMaskXtd)

Function Parameters:

Table 1.6-7: Filter parameters

Name Description Range
can Channel handle (see

1.6.3)
-

AccCodeStd: Acceptance code for
standard frames

[0 to 7FFHex] or
0xFFFFFFFF

AccMaskStd: Acceptance mask for
standard frames

[0 to 7FFHex] or
0xFFFFFFFF

AccCodeXtd: Acceptance code for
extended frames

[0 to 1FFFFFFFHex]

or 0xFFFFFFFF
AccMaskXtd: Acceptance mask for

extended frames
[0 to 1FFFFFFFHex]

or 0xFFFFFFFF

The function CANL2_set_acceptance initializes the
acceptance filter of the CAN controller.

The acceptance filter defines which identifiers should be
passed into the receive buffer of the CAN controller.

To receive an identifier all bits of the identifier that were
initialized as 1 in the acceptance mask must match the
corresponding bit in the acceptance code. A "0" in the
acceptance mask register means "Don't care" for the identifier
bit at this position.

Software description 51

The parameters are converted and written into the acceptance
code and mask registers of the Philips SJA1000.

NOTE
A parameter value of (-1) means that the API retrieves the
used value from SCIM (Softing CAN Interface Manager).

Function Return Codes:

 0: Function successful
-1: Function not successful
-104: Timeout firmware communication
-1000: Invalid channel handle

52 Software description

1.6.13 CANL2_enable_dyn_obj_buf

int CANL2_enable_dyn_obj_buf(CAN_HANDLE can)

CANL2_enable_dyn_obj_buf configures the API to run in
dynamic object buffer mode (see section 1.1.2). If this
function is not used, then the Softing CAN Interface card
operates with the static object buffer or in the FIFO mode (if
CANL2_enable_fifo has been called).

NOTE:
The static object buffer is usable for 11 and 29bit
identifiers.

Parameters:

can Channel handle (see 1.6.3)

Function Return Codes:

 0: Function successful
-1: Function not successful
-104: Timeout firmware communication
-1000: Invalid channel handle

Software description 53

1.6.14 CANL2_initialize_interface

int CANL2_initialize_interface(

CAN_HANDLE can,
int ReceiveFifoEnable,
int ReceivePollAll,
int ReceiveEnableAll,
int ReceiveIntEnableAll,
int AutoRemoteEnableAll,
int TransmitReqFifoEnable,
int TransmitPollAll,
int TransmitAckEnableAll,
int TransmitAckFifoEnable,
int TransmitRmtFifoEnable)

CANL2_initialize_interface configures properties and structure
the object buffer (see sections 1.4.2 and 1.4.3). It may not be
used in FIFO operation.

Function Parameters:

can Channel handle (see 1.6.3)

• ReceiveFifoEnable:

Type of receive message handling from firmware to PC
application.

1: Receive messages of data frames or remote frames
are transferred to the PC through the receive
message FIFO (see section 1.4.1).

0: The PC ascertains receive messages of data frames
or remote frames by polling the objects in the receive
object lists using the function CANL2_read_ac (see
1.4.2 and 1.5.4). Under certain conditions this can
cause a longer running time of the function
CANL2_read_ac, and can therefore result in lower
throughput rates.

54 Software description

- ReceivePollAll:

This flag is only meaningful for ReceiveFifoEnable = 0 with
static object buffer (should be 0 with dynamic object buffer).

1: Polling of all receive objects when CANL2_read_ac is
called (see section 1.4..3)

0: Polling of only those receive objects which have been
defined using CANL2_define_object (see Section
1.4.2 and 1.4.3)

- ReceiveEnableAll:

This flag is only meaningful with static object buffer (must be 0
with dynamic object buffer).

1: All data frames and remote frames with standard
identifiers are received. No receive objects need to be
defined (However: CANL2_define_object can be used
nevertheless, in order to activate receive objects for
polling by the application under the conditions
ReceivePollAll = 0 and ReceiveFifoEnable = 0)

0: All receive objects that are passed to the PC must be
defined beforehand using CANL2_define_object.
Objects that are not defined using
CANL2_define_object are not received by the (filter
functionality).

Software description 55

- ReceiveIntEnableAll:

This flag is only meaningful while ReceiveEnableAll = 1 with
static object buffer (should be 0 with dynamic object buffer).

1: When receiving an arbitrary object (declared using
CANL2_define_object or if ReceiveEnableAll = 1) the
receive message is passed to the PC application.
Additionally, an interrupt is generated to the PC. The
application program can read the object using
CANL2_read_ac.

0: Receipt of an object is only reported to the PC (with
interrupt) if the object has been declared in
CANL2_define_object with ReceiveIntEnable = 1.
Otherwise the data of the object will indeed be
entered into object buffer (and they can be read using
CANL2_read_rcv_data), but no information is
generated for the application regarding receipt of the
object (readable by CANL2_read_ac).

- AutoRemoteEnableAll:

This flag is only meaningful while ReceiveEnableAll = 1 with
static object buffer (should be 0 with dynamic object buffer).

1: When receiving an arbitrary remote frame the
interface independently transmits a data frame with
the same identifier (see 1.5.4).

0: When receiving a remote frame the interface only
transmits a data frame with the same identifier if the
corresponding receive object has been declared in
CANL2_define_object with AutoRemoteEnable = 1.
Otherwise the remote frame is reported to the PC
(calling CANL2_read_ac or CANL2_read_rcv_data).
The PC must transmit an explicit response (data
frame) then.

56 Software description

NOTE:
A data frame is transmitted after the first call of
CANL2_supply_object_data or CANL2_write_object
initialized the object data. A remote frame arriving before
data initialization results in error report -6 in the function
CANL2_read_ac.

- TransmitReqFifoEnable:

1: Transmit jobs for data frames or remote frames are
transferred to the CAN bus through the transmit job
FIFO (see sections 1.4.2 and 1.4.3)

0: Transmit jobs for data frames or remote frames are
ascertained by the firmware by polling the objects in
the transmit object lists (see sections 1.4.2 and 1.4.3).

- TransmitPollAll:

This flag is only meaningful for TransmitReqFifoEnable = 0
with static object buffer (should be 0 with dynamic object
buffer).

1 Polling of all transmit objects (see section 1.4.3)
0: Polling of only those transmit objects that have been

defined using CANL2_define_object (see section
1.4.2 and 1.4.3)

Software description 57

- TransmitAckEnableAll:

1: The interface acknowledges (in conjunction with an
interrupt to the PC) all data frames and remote frames
after successful transmission on the bus. This
acknowledgment can be read in CANL2_read_ac or
CANL2_read_xmt_data (see 1.4.2 and 1.4.3).

0: All objects whose data frames and remote frames are
to be acknowledged by the Interface after successful
transmission, must have been declared with the
parameter TransmitAckEnable=1 in
CANL2_define_object. Transmission of all other
objects is not reported to the application.

- TransmitAckFifoEnableAll:

1: Acknowledgements of transmitted data frames or
remote frames are transferred to the application
through the transmit-acknowledge-FIFO (????see
sections 1.4.2 and 1.4.3).

0: Acknowledgements of transmitted data frames or
remote frames are ascertained by polling of the
objects in the interface (see sections 1.4.2 and 1.4.3).
Under certain conditions this can cause a longer
running time of the function CANL2_read_ac and thus
lead to lower throughput rates of the interface.

58 Software description

- TransmitRmtFifoEnableAll:

This parameter selects the handling mechanism for objects
with Auto Remote Control configured (AutoRemoteEnable is
set).

1: Incoming remote frames are buffered in a FIFO and
are passed on for transmission of data frames (see
sections 1.4.2 and 1.4.3").

0: Incoming remote frames are stored in object lists,
which are polled for transmission of data frames (see
section 1.4.3").

Function Return Codes:

 0: Function successful
-1: Function not successful
-102: Wrong parameter
-104: Timeout firmware communication
-1000: Invalid channel handle

Software description 59

1.6.15 CANL2_define_object

int CANL2_define_object(

 CAN_HANDLE can,
 unsigned long Ident,
 int *ObjectNumber,
 int Type,
 int ReceiveIntEnable,
 int AutoRemoteEnable,
 int TransmitAckEnable)

The function CANL2_define_object defines and configures the
communication objects of the transmit and receive object lists
in object buffer mode.

In dynamic object buffer mode all used objects have to be
defined, while in static object buffer mode the function can be
used optionally for individual configuration of the object
handling.

In static object buffer mode the returned object number equals
the identifier. But in dynamic object buffer mode it corresponds
to the succession of definition in the related object list.

NOTE:
The API functions handle the objects by their object
number. Hence, the user is recommended to setup a table
of relations between identifier and object number in
dynamic object buffer mode.

60 Software description

Function Parameters:

- can:

channel handle (see 1.6.3) .

- Ident:

Identifier

 [0 to 7FFHex] for standard objects
[0 to 1FFFFFFFHex] for extended objects

- ObjectNumber:

In the mode dynamic object buffer the object number in the
related object list is returned in this parameter. It is a handle
for the online access to this object (CANL2_send_object,
CANL2_read_rcv_data...).

The identifier itself will no longer be referenced. In the mode
static object buffer the object number is equally to the
identifier.

- Type:

Direction of transmission and type of identifier

0: Standard receive object: Data frames and remote
frames with standard identifiers (11 bit) can be
received.

1: Standard transmit object: Data frames and remote
frames with standard identifiers (11 bit) can be
transmitted.

2: Extended receive object: Data frames and remote
frames with extended identifiers (29 bit) can be
received.

3: Extended transmit object: Data frames and remote
frames with extended identifiers (29 bit) can be
transmitted.

Software description 61

- ReceiveIntEnable (only for receive objects):

1: When receiving an object with the identifier Ident the
receive message is passed to the PC application.
Additionally, an interrupt is generated to the PC. The
application program can read the object using
CANL2_read_ac.

0: After receipt of an object the object data are indeed
entered into object buffer (and they can be read using
CANL2_read_rcv_data), but no information is
generated for the application regarding receipt of the
object. No interrupt is generated to the PC.

- AutoRemoteEnable (only for receive objects):

1: When receiving a remote frame with the identifier
Ident the firmware transmits a data frame with the
same identifier independently form the PC (see
sections 1.4.2 and 1.4.3).

0: When receiving a remote frame the remote frame is
reported to the PC (can be read using
CANL2_read_ac or CANL2_read_rcv_data). The PC
must transmit an explicit response (data frame).

NOTE:
The remote frame is only answered automatically after
the first call of CANL2_supply_object_data or
CANL2_write_object. This assures that no non-initialized
data are transmitted. A remote frame arriving before the
first call of CANL2_supply_object_data or
CANL2_write_object results in error report -115 in the
function CANL2_read_ac. For the auto remote feature it is
necessary to define a transmit object as well as a receive
object with the same identifier.

62 Software description

- TransmitAckEnable (only for transmit objects):

1 A data frame or remote frame with the identifier Ident
is acknowledged (in conjunction with an interrupt to
the PC) after successful transmission. This
acknowledgement can be read using CANL2_read_ac
or CANL2_read_xmt_data (see 5.1.2 and 5.1.3).

0: A data frame or remote frame with the identifier Ident
is not acknowledged to the application after
successful transmission on the bus.

NOTE:
Please note that the objects defined first are also polled
first, and in this way a higher priority and a lower polling
time is maintained relative to the objects that follow. It is
sensible to define objects in the sequence of their
identifiers in order to make prioritization of objects with
low identifiers the same as on the CAN bus. This is true
for static as well as for dynamic object buffer mode.

Function Return Codes:

 0: Function successful
-1: Function not successful
-102: Wrong parameter
-104: Timeout firmware communication
-109 Dyn. Obj. buffer mode not enabled
-1000: Invalid channel handle

Software description 63

1.6.16 CANL2_start_chip

int CANL2_start_chip(CAN_HANDLE can)

The function CANL2_start_chip puts the CAN controller into
operational mode. From now on transmit jobs can be issued
and reception of messages is monitored.

Parameters:

can Channel handle (see 1.6.3)

Function Return Codes:

 0: Function successful
-1: Function not successful
-104: Timeout firmware communication
-1000: Invalid channel handle

64 Software description

1.6.17 CANL2_define_cyclic

int CANL2_define_cyclic(

CAN_HANDLE can,
int ObjectNumber,
unsigned int Rate,
unsigned int Cycles)

The function CANL2_define_cyclic defines cyclic transmission
of a communication object for the CAN channel which was
previously defined by CANL2_define_object.

The cyclic transmission is started and stopped by the value of
Rate. The settings (transmission start/stop) are put into
operation by the first call of CANL2_send_object or
CANL2_write_object for the object after the definition call.

Alternatively, the cyclic transmission is stopped automatically if
the defined number of cycles Cycles is reached.

NOTE:
If defined and started a cyclic object has to be stopped
before any succeeding redefinition. Redefinition of the
cycle rate while running the transmission results in faulty
transmission.

The transmitted data contents are defined by
CANL2_supply_object or CANL2_write_object. They can be
modified during cyclic transmission as well.

NOTE:
This function can only be used in dynamic object buffer
mode.

Software description 65

Function Parameters:

- can:

 channel handle (see 1.6.3).

- ObjectNumber:

 Object reference returned by CANL2_define_object.

- Cycles [0..65535]:

0: Unlimited cyclic repetition
1..65535: Number of cyclic repetitions

- Rate [0..65535]:

0: Disable cyclic transmission (stop)
1..65535: Transmission rate in ms

Function Return Codes:

 0: Function successful
-1: Function not successful
-104: Timeout firmware communication
-1000: Invalid channel handle

66 Software description

1.6.18 CANL2_send_remote_object

int CANL2_send_remote_object(

CAN_HANDLE can,
int ObjectNumber,
int DataLength)

Function Parameters:

- can: Channel handle (see 1.6.3)
- ObjectNumber: Object number
- DataLength: Number of data bytes

This function initiates transmission of a remote frame for a
transmit object specified by the object number. The remote
frame has a data length 0; however, the data length code is
physically transmitted with the data length code DataLength.

If TransmitFifoEnable is set the transmit job is entered into the
transmit FIFO. Otherwise the transmit request is registered in
the transmit object list to be polled by the firmware.

ObjectNumber is the reference to the object returned by
CANL2_define_object. In static object buffer mode it’s equal to
the CAN identifier, while in dynamic object buffer mode it
depends on the succession of definition (see sections 1.4.2
and 1.4.3).

NOTE:
This function can only be used in object buffer mode, not
in FIFO mode.

Software description 67

Function Return Codes:

 0: Function successful
-1: Function not successful
-104: Timeout firmware communication
-110 Last request still pending
-116 Transmit request FIFO overrun
-1000: Invalid channel handle

68 Software description

1.6.19 CANL2_supply_object_data

int CANL2_supply_object_data(

 CAN_HANDLE can,
int ObjectNumber,
int DataLength,
byte *pData)

Function Parameters:

- can: Channel handle (see 1.6.3)
- ObjectNumber: Object number
- DataLength: Number of data bytes
- pData: Pointer to the address field of data to

be transmitted

This function enters current data into the object buffer of the
transmit object specified by ObjectNumber.

The data are not transmitted directly onto the bus, but rather
they are prepared for pickup by a remote frame (Auto Remote)
or a later transmit job (later: CANL2_send_object).

ObjectNumber is the reference to the object returned by
CANL2_define_object. In static object buffer mode it’s equal to
the CAN identifier, while in dynamic object buffer mode it
depends on the succession of definition (see sections 1.4.2
and 1.4.3).

NOTE:
This function can only be used in object buffer mode, not
in FIFO mode.

Software description 69

Function Return Codes:

 0: Function successful
-104: Timeout firmware communication
-110 Last request still pending
-115 Object is not defined
-1000: Invalid channel handle

70 Software description

1.6.20 CANL2_supply_rcv_object_data

int CANL2_supply_rcv_object_data(

 CAN_HANDLE can,
int ObjectNumber,
int DataLength,
byte *pData),

Function Parameters:

- can: Channel handle (see 1.6.3)
- ObjectNumber: ObjectNumber
- DataLength: Number of data bytes
- pData: Pointer to the address field of data to

be written in the object buffer

This function enters new data into the object buffer of the
specified receive object.

This function can be used for initialization of receive objects in
order to get reasonable values even before the first reception
of a respective data frame took place.

ObjectNumber is the reference to the object returned by
CANL2_define_object. In static object buffer mode it’s equal to
the CAN identifier, while in dynamic object buffer mode it
depends on the succession of definition (see sections 1.4.2
and 1.4.3).

NOTE:
This function can only be used in object buffer mode, not
in FIFO mode.

Software description 71

Function Return Codes:

 0: Function successful
-104: Timeout firmware communication
-110 Last request still pending
-115 Object is not defined
-1000: Invalid channel handle

72 Software description

1.6.21 CANL2_send_object

int CANL2_send_object(

 CAN_HANDLE can,
int ObjectNumber,
int DataLength),

Function Parameters:

- can: Channel handle (see 1.6.3)
- ObjectNumber: ObjectNumber
- DataLength: Number of data bytes to be transmitted

This function transmits a data frame for the transmit object
specified by ObjectNumber. The data frame has a length of
DataLength bytes. The data transmitted are the last entered
into transmit object buffer using CANL2_supply_object_data
or CANL2_write_object.

If TransmitFifoEnable is set the transmit job is entered into the
transmit FIFO to be further processed. Otherwise the transmit
request is registered in the transmit object list to be polled by
the firmware.

ObjectNumber is the reference to the object returned by
CANL2_define_object. In static object buffer mode it’s equal to
the CAN identifier, while in dynamic object buffer mode it
depends on the succession of definition (see 1.4.2 and 1.4.3).
CANL2_send_object transmits a data frame on CAN channel
1, CANL2_send_object2 transmits a data frame on CAN
channel 2.

NOTE:
This function can only be used in object buffer mode, not
in FIFO mode.

Software description 73

Function Return Codes:

 0: Function successful
-104: Timeout firmware communication
-110 Last request still pending
-116 Transmit request FIFO overrun
-1000: Invalid channel handle

74 Software description

1.6.22 CANL2_write_object

int CANL2_write_object(

 CAN_HANDLE can,
 int ObjectNumber,
 int DataLength,
 byte *pData),

Function Parameters:

- can: Channel handle (see 1.6.3)
- ObjectNumber: ObjectNumber
- DataLength: Number of data bytes
- pData: Pointer to the address field of data to

be transmitted

This function performs an update of the data in the object
buffer of the transmit object specified by ObjectNumber. Then
a data frame is transmitted with DataLength bytes.

If TransmitFifoEnable is set the transmit job is entered into the
transmit FIFO to be further processed. Otherwise the transmit
request is registered in the transmit object list to be polled by
the firmware.

ObjectNumber is the reference to the object returned by
CANL2_define_object. In static object buffer mode it’s equal to
the CAN identifier, while in dynamic object buffer mode it
depends on the succession of definition (see sections 1.4.2
and 1.4.3).

NOTE:
This function can only be used in object buffer mode, not
in FIFO mode.

Software description 75

Function Return Codes:

 0: Function successful
-104: Timeout firmware communication
-110 Last request still pending
-115 Object is not defined
-116 Transmit request FIFO overrun
-1000: Invalid channel handle

76 Software description

1.6.23 CANL2_read_rcv_data

int CANL2_read_rcv_data(

CAN_HANDLE can,
int ObjectNumber,
byte *pRCV_Data,
unsigned long *Time)

Function Parameters:

- can: Channel handle (see 1.6.3)
- ObjectNumber: Object number
- pRCV_Data: Pointer to the address field of data

being received
- Time: Pointer to a time stamp parameter

This function copies the data of the receive object specified by
ObjectNumber to the address pRCV_Data. The data are read,
even if no new data were received. 8 data bytes are always
copied to pRCV_Data, independent of the length of the
received data frame.

If data in the object buffer are overwritten before they were
read by the application or a remote request is not read quickly
enough an overrun is signaled to the application by the
function return code (overrun in object buffer).

If a remote frame was received the user is informed by a
specific return code.

Time returns the instant of the last received data with a
resolution of 1 microsecond (time stamp is reset in
CANL2_start_chip).

ObjectNumber is the reference to the object returned by
CANL2_define_object. In static object buffer mode it’s equal to
the CAN identifier, while in dynamic object buffer mode it
depends on the succession of definition (see sections 1.4.2
and 1.4.3).

Software description 77

NOTE:
 This function can only be used in object buffer mode, not
in FIFO mode.

Function Return Codes:

 0: No new data received
 1: Data frame received
 2: Remote frame received
-104: Timeout firmware communication
-111: Receive data frame overrun
-112: Receive remote frame overrun
-113: Object is undefined
-1000: Invalid channel handle

78 Software description

1.6.24 CANL2_read_xmt_data

int CANL2_read_xmt_data(

 CAN_HANDLE can,
int ObjectNumber,
int *pDataLength,
byte *pXMT_Data),

Function Parameters:

- can: Channel handle (see 1.6.3)
- ObjectNumber: ObjectNumber
- pDataLength: Pointer to entry of number of

transmitted data bytes
- pXMT_Data: Pointer to the address field of data to

be transmitted

This function reads the data and the initialized data length of
the transmit object specified by ObjectNumber. Further, it
checks whether a frame has been transmitted for this object.

If no transmission acknowledgments are returned by the
object the function return code 1 indicates that the last
transmit job was acknowledged by another CAN node. The
return code -1 means that the last transmission
acknowledgment has not been read by the application yet.

ObjectNumber is the reference to the object returned by
CANL2_define_object. In static object buffer mode it’s equal to
the CAN identifier, while in dynamic object buffer mode it
depends on the succession of definition (see sections 1.4.2
and 1.4.3).

NOTE:
This function can only be used in object buffer mode, not
in FIFO mode.

Software description 79

Function Return Codes:

 0: No message was transmitted
 1: Message was transmitted
-104: Timeout firmware communication
-114: Transmit acknowledge overrun
-1000: Invalid channel handle

80 Software description

1.6.25 CANL2_send_data

int CANL2_send_data(

 CAN_HANDLE can,
 unsigned long Ident,
 int Xtd,
 int DataLength,
 byte *pData)

Function Parameters:

- can: Channel handle (see 1.6.3)
- Ident: Identifier
- Xtd: Identifier length

0: Standard Identifier
1: Extended Identifier

- DataLength: Number of data bytes to be transmitted
- pData: Pointer to the address field of the data

This function transmits a data frame with the passed
parameters on the CAN channel.

The transmit request is processed through the transmit FIFO.
If the FIFO is full the application is informed by the return
value.

NOTE:
The function CANL2_send_data can only be used in FIFO
mode, not in object buffer mode. The function
CANL2_send_data2 can only be used in FIFO mode or
static object buffer mode, not in dynamic object buffer
mode.

Software description 81

Function Return Codes:

 0: Function successful
-1: Function not successful
-104: Timeout firmware communication
-1000: Invalid channel handle

82 Software description

1.6.26 CANL2_send_remote

int CANL2_send_remote(

CAN_HANDLE can,
unsigned long Ident,
int Xtd,
int DataLength)

Function Parameters:

- can: Channel handle (see 1.6.3)
- Ident: Identifier
- Xtd: Identifier length

0: Standard Identifier
1: Extended Identifier

- DataLength: Number of data bytes requested remote

This function transmits a remote frame with the Identifier Ident
on the CAN channel. The remote frame has data length 0;
however, the data length specified by the parameter
DataLength is transmitted in the DLC field of the remote
frame.

The transmit request is processed through the transmit FIFO.
If the FIFO is full the application is informed by the return
value.

NOTE:
The function CANL2_send_remote can only be used in
FIFO mode, not in object buffer mode.

Function Return Codes:

 0: Function successful
-1: Function not successful
-104: Timeout firmware communication
-1000: Invalid channel handle

Software description 83

1.6.27 CANL2_read_ac

int CANL2_read_ac(

CAN_HANDLE can,
PARAM_STRUCT *ac_param)

By calling this function the application is informed about data
transmission and reception as well as about various error
conditions and bus events.

Several different CAN events can be distinguished by
evaluation of the function return code (see Table 1.6-8).
Certain information and parameters of interest are transferred
in the elements of the parameter structure PARAM_STRUCT.

Parameters:

• Can:

channel handle (see 1.6.3)

Elements of structure PARAM_STRUCT:

NOTE:
RC1 through RC12 in brackets specify the function return
codes of CANL2_read_ac for which the described
parameter is valid. The application should not evaluate
the parameter if it comes with a different function return
code than stated below.

• unsigned long Ident:

Identifier (FIFO mode) or object number (object buffer mode)
of the data or remote frame which was received or
successfully transmitted.

(RC1, RC2, RC3, RC8, RC9, RC10, RC11, RC12)

84 Software description

• int DataLength:

Number of received (RC1, RC9) or transmitted (RC3, RC10)
data bytes.

The DataLength of the received frame is only valid in FIFO
mode and should not be used in object buffer mode. In object
buffer mode the data length of the CAN messages should be
predefined by the project.

Software description 85

• int RecOverrun_flag:

The last received data of object Ident were not read by the PC
and were overwritten by the new data (RC1, RC2, RC9,
RC12). Only valid in object buffer mode.

• int RCV_fifo_lost_msg:

Number of lost messages in receive FIFO (RC1, RC2, RC8,
RC9, RC11, RC12). Only valid in FIFO mode.

• byte RCV_data[8]:

Data bytes of the received data frame (RC1, RC9) and in
FIFO Mode (RC1, RC9, RC3, RC10).

• int AckOverrunFlag:

This flag is set if an unread transmit acknowledge for a
transmit object is overwritten by a new one (RC3, RC10). Only
valid in object buffer mode.

• int XMT_ack_fifo_lost_acks:

Number of lost acknowledges messages in transmit-
acknowledge-FIFO in object buffer mode due to FIFO
overrun(RC3, RC10).

Only valid in mode object buffer configured with
TransmitAckFifoEnable=1.

• int XMT_rmt_fifo_lost_remotes:

Number of lost jobs in remote transmit FIFO (RC4). Only valid
in object buffer mode initialized with
TransmitRmtFifoEnable=1.

86 Software description

• int Bus_state:

Returns the new CAN bus status if a status change occurred
(RC5).

0: error active

1: error passive

2: bus off

• int Error_state:

Not used with:
CANcard2, CAN-ACx-PCI, CAN-ACx-104, CANusb.

With CAN-PROx-PCIe, CAN-PROx-104+:

 MSB LSB

Bits 31..24 23..16 15..9 7..0

Value Receive Error
Counter

Transmit
Error Counter

not
used

only valid with
Lowspeed
Module:
ERROR signal
was active since
the last call to
CANL2_read_ac
, if this value is
unequal to 0.

Software description 87

• int can:

channel handle (see 1.6.3)

(RC1, RC2, RC3, RC4, RC5, RC7, RC8, RC9, RC10, RC11,
RC12,RC15)

• unsigned long Time:

Time stamp of signaled events with a resolution of 1µs. The
timer is reset in CANL2_start_chip. (RC1, RC2, RC9, RC12,
RC3, RC5, RC8, RC10, RC11, RC15)

88 Software description

Table 1.6-8: Function return codes of CANL2_read_ac

FRC Explanation
0: No new event
1: Standard data frame received
2: Standard remote frame received
3: Transmission of a standard data frame is confirmed
4: Overrun of the remote transmit FIFO. Only with

object buffer and auto remote feature.
5: Change of bus status
6: not implemented
7: Not used
8: Transmission of a standard remote frame is

confirmed.
9: Extended data frame received
10: Transmission of an extended data frame is

confirmed
11: Transmission of an extended remote frame is

confirmed
12: Extended remote frame received
13, 14 Not valid. Only useful with CANcard API
15: Error frame detected
-1: Function not successful
-104: Timeout firmware communication
- 115: access to an abject denied, because the object has

not been initialized with data using
CANL2_supply_object()

-1000: Invalid channel handle

Software description 89

1.6.28 CANL2_reinitialize

int CANL2_reinitialize(CAN_HANDLE can);

CANL2_reinitialize stops the current online operation of the
specified CAN channel. Afterwards the operating mode and all
corresponding parameters can be set anew (see Fig. 1-5, 1-6,
1-7).

Parameters:

can Channel handle (see 1.6.3)

Function Return Codes:

 0: Function successful
-1: Function not successful
-104: Timeout firmware communication
-1000: Invalid channel handle

90 Software description

1.6.29 CANL2_get_time

int CANL2_get_time(CAN_HANDLE can, unsigned long
*time);

Function Parameters:

- can: Channel handle (see 1.6.3).

- time: Time (32bit) in µs

CANL2_get_time returns the 32bit time from the onboard timer
of the Softing CAN Interface card in the parameter time. The
unit of time is μs.

The timer is reset by CANL2_reset_chip.

Function Return Codes:

 0: Function successful
-1: Function not successful
-104: Timeout firmware communication
-1000: Invalid channel handle

Software description 91

1.6.30 CANL2_get_bus_state

int CANL2_get_bus_state(CAN_HANDLE can);

Function Parameters:

- can: Channel handle (see 1.6.3)

CANL2_get_bus_state returns the current bus status of the
CAN controller.

If the CAN controller is in bus off state it must be reset and
started again to enable further access to the bus.

Function Return Codes:

 0: Error active
 1: Error passive
 2: Bus off
-1: Function not successful
-104: Timeout firmware communication
-1000: Invalid channel handle

92 Software description

1.6.31 CANL2_reset_lost_msg_counter

int CANL2_reset_lost_msg_counter(CAN_HANDLE can);

CANL2_reset_lost_msg_counter resets the counter for the
receive messages which were lost while the receive FIFO
remained full in FIFO mode.

The lost message counter is supplied in the parameter
structure of CANL2_read_ac.

NOTE
This function is not useful in dynamic object buffer
mode.

Parameters:

can Channel handle (see 1.6.3)

Function Return Codes:

 0: Function successful
-1: Function not successful
-104: Timeout firmware communication
-1000: Invalid channel handle

Software description 93

1.6.32 CANL2_read_rcv_fifo_level

int CANL2_read_rcv_fifo_level(CAN_HANDLE can);

CANL2_read_rcv_fifo_level returns the number of events in
the receive FIFO waiting to be read by CANL2_read_ac.

The FIFO level can be reset to 0 by CANL2_reset_rcv_fifo
which clears the FIFO.

NOTE
This function is not useful in dynamic object buffer mode.

Parameters:

can Channel handle (see 1.6.3)

Function Return Codes:

0 ... n: Messages in receive FIFO
-1: Function not successful
-104: Timeout firmware communication
-1000: Invalid channel handle

94 Software description

1.6.33 CANL2_reset_rcv_fifo

int CANL2_reset_rcv_fifo(CAN_HANDLE can);

CANL2_reset_rcv_fifo resets the receive fifo in FIFO mode.

NOTE
This function is not useful in dynamic object buffer
mode.

Parameters:

can Channel handle (see 1.6.3)

Function Return Codes:

 0: Function successful
-1: Function not successful
-104: Timeout firmware communication
-1000: Invalid channel handle

Software description 95

1.6.34 CANL2_read_xmt_fifo_level

int CANL2_read_xmt_fifo_level(CAN_HANDLE can);

CANL2_read_xmt_fifo_level returns the number of transmit
jobs in the transmit FIFO waiting to be transmitted by the
interface.

A pending transmission request which is already entered into
the transmit buffer of the CAN controller is not counted.

The FIFO level can be reset to 0 by CANL2_reset_xmt_fifo
which clears the FIFO.

NOTE
This function is not useful in dynamic object buffer
mode.

Parameters:

can Channel handle (see 1.6.3)

Function Return Codes:

0 ... n: Jobs in transmit FIFO
-1: Function not successful
-104: Timeout firmware communication
-1000: Invalid channel handle

96 Software description

1.6.35 CANL2_reset_xmt_fifo

int CANL2_reset_xmt_fifo(CAN_HANDLE can);

CANL2_reset_xmt_fifo resets the transmit FIFO in FIFO
mode.

NOTE
This function is not useful in dynamic object buffer
mode.

Parameters:

can Channel handle (see 1.6.3)

Function Return Codes:

 0: Function successful
-1: Function not successful
-104: Timeout firmware communication
-1000: Invalid channel handle

Software description 97

1.6.36 CANL2_set_interrupt_event

CANL2_set_interrupt_event(

CAN_HANDLE can,
HANDLE InterruptEvent)

This function gives a HANDLE (pointer) of a Windows event to
the driver which is set if an interrupt is signaled to the PC by
the Softing CAN Interface card.

The event must be created beforehand by the application with
CreateEvent which is a function of the Windows API and
returns the required HANDLE. This Windows event can be
used to control the processing of a Windows process or
thread.

For more detailed information about the interrupt handling
refer to Chapter 1.6.2.

Function Return Codes:

 0: Function successful
-1: Function not successful
-1000: Invalid channel handle

98 Software description

1.6.37 CANL2_init_signals

int CANL2_init_signals(
 CAN_HANDLE can,
 unsigned long ulChannelDirectionMask,
 unsigned long ulChannelOutputDefaults)

NOTE
This function is for use with the Softing CAN lowspeed
module only! If no lowspeed module is installed, then this
function is not needed.

1.6.37.1 CAN Lowspeed module overview

Via CAN API, all status and control signals from and to the
module plug-in stations are made available for the user’s
convenience. In this manner, the user has all features of the
CAN Lowspeed Transceivers under his control; he can freely
determine the change of operating modes between CAN
Highspeed and CAN Lowspeed and read in the identifier of
the module, if necessary.

After a RESET of the CAN Interface card, the operating mode
CAN Highspeed is set by default in the CAN Lowspeed
module. To permit access to the status and control signals
and switch over to the CAN Lowspeed mode, the possibility of
access to the signals of the module plug-in stations must first
be initialized. The read-in of the status signals and switching
of the control signals then takes place via read and write
functions.

The table 1.6.36 gives a survey of the configurations to be
selected during initialization of the read and write functions
and of the signal bit assignment to the connection pins of the
module plug-in stations and to the signals arriving there.

During reset, the signals are initialized in such a way that CAN
highspeed is selected and the two LS Transceivers are in the
sleep mode

The function initializes the direction of the signal and defines it
for further use.

Software description 99

1.6.37.2 How to use CANL2_init_signals

The parameter can is the CAN handle. (see 1.6.3)

For operation of the CAN LS modules, the bits of the
parameter ”ulChannelDirectionMask” must be selected
according to table 1.6.36. The following applies to every bit
position:

 1 defines the signal direction as ”output”

 0 defines the signal direction as ”input”.

NOTE
Ports exclusively for input cannot be defined as outputs.
Unassigned bit positions can be defined as desired.
”Input” and ”output” are defined from the position of the
microprocessor C165 or XC161.

Operation of the CAN Lowspeed Module:

The parameter "ulChannelOutputDefaults" indicates the
default status at the output for the bit positions for which the
signal direction ”output” has been defined via
”ulChannelDirectionMask". (For the settings, see table 1.6.36;)

This table supplies information on the reset status = inactive
transceivers; the default status may deviate.)

1 defines the default level "high" for an ”output”.

0 defines the default level "low" for an ”output”.

The values of the bit positions for which the signal direction
”input” has been determined, are irrelevant.

This function must be called before CANL2_write_signals()
and CANL2_read_signals(), to setup the port pins of the
microcontroller on the CAN Interface board.

100 Software description

Function Return Codes:

 0: Function successful
-1: Error: signals have already been initialized
-2: An exclusive input port has been defined as

output.

-104: Timeout firmware communication
-1000: Invalid channel handle

NOTE
Execution of the initialization function
CANL2_init_signals() is permitted only once after loading
of the firmware into the Softing CAN Interface.
Reinitialization of the status and control signals is
possible only

The following table shows the Signal bit assignment to
control and status signals
Bit
pos.

Direction of
the signal

Reset
default
status

Description of the signal

0 Out-> H LS Transceiver signal:
EN (signal inverted,
resetlevel = L)

1 Out-> H LS Transceiver
signal:/STB (signal inverted, reset
level=L)

2 Out-> H HS/LS switchover (H = Highspeed)

3 Out-> H LS Transceiversignal: /WAKE

4 In <- H LS Transceiver signal: NERR

5 In <- H Module identifier bit 0=1

6 In <- L Module identifier bit 1=0

7 In <- L Module identifier bit 2=0

Table 1.6.36

Software description 101

Example:

Initialisation of the lowspeed module:

CANL2_init_signals(can, 0x0000000F, 0x00000004);
Switching to CAN lowspeed:
CANL2_write_signals(can, 0x00000000, 0x00000004);
Switching back to CAN highspeed:
CANL2_write_signals(can, 0x00000004, 0x00000004);

102 Software description

1.6.38 CANL2_read_signals

CANPC_read_signals(
 CAN_HANDLE can,
 unsigned long *ulChannelRead)

NOTE
This function is for use with the Softing CAN lowspeed
module only! If no lowspeed module is installed, then this
function is not needed.

The function reads in the current signal statuses. The
parameter ”ulChannelRead” is coded according to table
1.6.36.

The following applies to every bit position:

Operation of the CAN Lowspeed Module

 1 means that the signal level is ”high”.

 0 means that the signal level is ”low”.

If a signal has been defined as output, the output is read back
–if possible- or the value set and buffered last is returned.

Unassigned bit positions are evaluated at ”0”.

The function is useful to detect, whether a lowspeed
piggyback is installed on the hardware. If a lowspeed
piggyback is plugged, then the module identifier bit “bit0” is 1,
and the module identifier bits “bit1” and “bit2” are 0. (see table
1.6.36)

The parameter can is the CAN handle. (see 1.6.3)

Function Return Codes:

 0: Function successful
-1: Error: signals have not yet been initialized
-104: Timeout firmware communication
-1000: Invalid channel handle

Software description 103

1.6.39 CANL2_write_signals

int CANPC_write_signals(
 CAN_HANDLE can,
 unsigned long ulChannelWrite,
 unsigned long ulCareMask)

NOTE
This function is for use with the Softing CAN lowspeed
module only! If no lowspeed module is installed, then this
function is not needed.

The function sets output signals according to the parameter
definition.

The parameter can is the CAN handle. (see 1.6.3)

The parameters ”ulChannelWrite” and ”ulCareMask” are
coded according to table 1.6.36.

Signals set at ”0” in the ”ulCareMask” are ignored. Only those
signals are written which are set at ”1” in the ”ulCareMask”
parameter. For these signals, the parameter ”ulChannelWrite”
is evaluated and the following applies:

 1 means that the signal level is set at ”high”.

 0 means that the signal level is set at ”low”.

A write access to an unassigned bit position is ignored.

Function Return Codes:

 0: Function successful
-1: Error: signals have not yet been initialized,

this must be done by using
CANL2_init_signals()

-2: Error: write access to an input signal
-104: Timeout firmware communication
-1000: Invalid channel handle

104 Software description

Example: Lowspeed/Highspeed switchover:

Switching to CAN lowspeed:
CANL2_write_signals(can, 0x00000000, 0x00000004);
Switching back to CAN highspeed:
CANL2_write_signals(can, 0x00000004, 0x00000004);

Software description 105

1.6.40 INIL2_close_channel

int INIL2_close_channel(CAN_HANDLE can)

This function releases and unlocks the system resources
which were allocated by INIL2_initialize_channel.

The function call should be applied at any possible application
exit after successful call to INIL2_initialize_channel.
Otherwise, the application may have problems to get the
handle to the DPRAM a second time without system exit (e.g.
applications with LabVIEW a.o.).

Parameters:

can Channel handle (see 1.6.3)

Function Return Codes:

 0: Function successful
-1000: Invalid channel handle

106 Software description

1.7 Description of the Softing CAN class library

1.7.1 Interrupt processing

1.7.1.1 Interrupt events

For many applications it is useful to be informed by interrupt
about occurrence of CAN events. Otherwise, the Softing CAN
Interface cards must be polled for new events which requires
more PC processor time.

The firmware triggers a hardware interrupt to the PC on the
following CAN events:

• Reception of data, remote and error frames

• Acknowledge on successful transmissions if enabled

• Change of bus state

Software description 107

1.7.1.2 .Net interrupt programming

The class library provides an event which can be used for
triggering a delegate function.

The name of the event is: CANL2Channel::CANEvent

The delegate function must have the following format:

Visual Basic:

Public Sub OnCanEvent(ByVal param As PARAM_CLASS,
 ByVal type As Integer)

C#:

static public void
OnCanEvent(PARAM_CLASS param, int type)

Members of PARAM_CLASS:

NOTE:
RC1 through RC12 in brackets specify the event type
code for which the described parameter is valid. The
application should not evaluate the parameter if it comes
with a different event type code than stated below.

• unsigned long Ident:

Identifier (FIFO mode) or object number (object buffer mode)
of the data or remote frame which was received or
successfully transmitted.

(RC1, RC2, RC3, RC8, RC9, RC10, RC11, RC12)

• int DataLength:

Number of received (RC1, RC9) or transmitted (RC3, RC10)
data bytes.

108 Software description

The DataLength of the received frame is only valid in FIFO
mode and should not be used in object buffer mode. In object
buffer mode the data length of the CAN messages should be
predefined by the project.

• int RecOverrun_flag:

The last received data of object Ident were not read by the PC
and were overwritten by the new data (RC1, RC2, RC9,
RC12). Only valid in object buffer mode.

• int RCV_fifo_lost_msg:

Number of lost messages in receive FIFO (RC1, RC2, RC8,
RC9, RC11, RC12). Only valid in FIFO mode.

• byte RCV_data[8]:

Data bytes of the received data frame (RC1, RC9).

• int AckOverrunFlag:

This flag is set if an unread transmit acknowledge for a
transmit object is overwritten by a new one (RC3, RC10). Only
valid in object buffer mode.

• int XMT_ack_fifo_lost_acks:

Number of lost acknowledges messages in transmit-
acknowledge-FIFO in object buffer mode due to FIFO
overrun(RC3, RC10).

Only valid in mode object buffer configured with
TransmitAckFifoEnable=1.

• int XMT_rmt_fifo_lost_remotes:

Number of lost jobs in remote transmit FIFO (RC4). Only valid
in object buffer mode initialized with
TransmitRmtFifoEnable=1.

Software description 109

• int Bus_state:

Returns the new CAN bus status if a status change occurred
(RC5).

0: error active

1: error passive

2: bus off

• int Error_state:

Not used. Only for conformity to CANcard and CAN-AC2 (ISA)
API.

• int can:

Number of CAN channel where the event occurred which is
defined by the function return code.

(RC1, RC2, RC3, RC4, RC5, RC7, RC8, RC9, RC10, RC11,
RC12,RC15)

•unsigned long Time:

Time stamp of signaled events with a resolution of 1µs. The
timer is reset in CANL2_start_chip. (RC1, RC2, RC9, RC12,
RC3, RC5, RC8, RC10, RC11, RC15)

110 Software description

Table 1.7-8: event types (possible values of the type
parameter)

event Explanation
0: No new event
1: Standard data frame received
2: Standard remote frame received
3: Transmission of a standard data frame is confirmed
4: Overrun of the remote transmit FIFO. Only with

object buffer and auto remote feature.
5: Change of bus status
6: not implemented
7: Not used
8: Transmission of a standard remote frame is

confirmed.
9: Extended data frame received
10: Transmission of an extended data frame is

confirmed
11: Transmission of an extended remote frame is

confirmed
12: Extended remote frame received
13, 14 Only useful with CANcard
15: Error frame detected
-1: Function not successful
-3: Error accessing DPRAM
-4: Timeout firmware communication
-6: access to an abject denied, because the object has

not been initialized with data using
CANL2_supply_object()

-99: Board not initialized: INIL2_initialize_channel() was
not yet called or a INIL2_close_channel() was done

Software description 111

To install a delegate function you must only add the following
line to your initialization routine (if your instance is called
“channel” and your delegate function is called “OnCanEvent”)

Visual Basic style:

AddHandler channel.CANEvent, AddressOf OnCanEvent

C# style:

channel.CANEvent +=
new CANL2Channel.CANEventDelegate(OnCanEvent);

112 Software description

1.7.2 CANL2Channel::INIL2_initialize_channel

Visual Basic style:

Public Function
INIL2_initialize_channel(channel_name As String) As Integer

C# style:

int INIL2_initialize_channel(string channel_name)

Function Parameters:

Type/Name Description
String
channel_name

IN: Name of the channel, which should
be used; must be set by the
application;

INIL2_initialize_channel enables the memory access to the
DPRAM of the Softing CAN Interface cards. Thus, it is
necessarily called before any other API function.

If the DPRAM access is denied the function returns an error
code which corresponds to the error cause.

NOTE:
If CANL2_initialize_channel fails, other API functions
should not be called since the non-initialized memory
handle may cause an access violation.

Software description 113

Function Return Codes:

0 Initialization successful
-536215551 Internal Error
-536215550 General Error
-536215546 Illegal driver call
-536215542 Driver not loaded / not installed, or device

is not plugged.
-536215541 Out of memory
-536215531 An error occurred while hooking the

interrupt service routine
-536215523 Device not found
-536215522 Can not get a free address region for

DPRAM from system
-536215521 Error while accessing hardware
-536215519 Can not access the DPRAM memory
-536215516 Interrupt does not work/Interrupt test failed!
-536215514 Device is already open
-536215512 An incompatible firmware is running on

that device
(CANalyzer/CANopen/DeviceNet firmware)

-536215511 Channel can not be accessed, because it
is not open

-536215500 Error while calling a Windows function
 -1002 Too many open channels.

-1003 Wrong DLL or driver version.

-1004 Error while loading the firmware. (This may
be a DPRAM access error)

-1 Function not successful

114 Software description

Error codes which can only occur with the CANusb interface:

-602 Unable to open USB pipe
-603 Communication via USB pipe broken
-604 No valid lookup table entry found
-611 CANusb framework initialization failed
-1005 CANusb DLL (CANusbM.dll) not found.

Software description 115

1.7.3 CANL2Channel::CANL2_get_all_CAN_channels

Visual Basic style:

Public Function
CANL2_get_all_CAN_channels(
 ByRef pu32NumOfChannels As UInteger,
 ByRef snapshot As CHDSNAPSHOT) As Integer

C# style:

int CANL2_get_all_CAN_channels (
 ref UInt32 pu32NumOfChannels,
 ref CHDSNAPSHOT[] snapshot)

This function provides information about the CAN channels in
your computer. It writes the information into the elements of
the array “snapshot”.

Function Parameters:

• pu32NumOfChannels: (INOUT)

This parameter must be initialized by the user with the number
of elements in the array “ CHDSNAPSHOT[]”.

After the call of CANL2_get_all_CAN_channels the parameter
holds the number of CAN channels in your Computer.

• snapshot: (OUT)

Array of the class CHDSNAPSHOT; It holds the information
about the CAN channels after the function call. (Channel
names, type of firmware, which is loaded on a specific
channel, whether the channel is opened by an other
application or not, serial number of the Softing CAN Interface,
physical channel number [1 or 2])

116 Software description

Members of CHDSNAPSHOT:

• u32Serial:

Serial number of the CAN Interface (32 Bit unsigned integer)

• u32DeviceType:

Type of Softing CAN Interface: (32 Bit unsigned integer)

u32DeviceType Softing CAN Interface
5 CANcard2
7 CAN-Acx-PCI
8 CAN-Acx-PCI/DN
9 CAN-Acx-104
10 CANusb
13 CAN-PROx-PCIe
14 CAN-PROx-PC104+
15 CANpro USB
261 EDICcard2

• u32PhysCh: (32 Bit unsigned integer)

Physical channel number; The physical channel number of the
first channel on an CAN interface with 2 channels is 1, the
number of the second channel on the same interface is 2.

• u32FwId: (32 Bit unsigned integer)

Type of the firmware which is loaded on the channel; layer 2
firmware has the firmware id 0x01.

• bIsOpen: (Bool)

True if the channel is opened by a process, false otherwise.

• ChannelName: (String)) [80 Bytes]

The name of the channel.

Software description 117

Function Return Codes:

 0: Function successful
-1: Function not successful

118 Software description

1.7.4 CANL2Channel::CANL2_set_rcv_fifo_size

Visual Basic style:

Public Function
CANL2_set_rcv_fifo_size (FifoSize As Integer) As Integer

C# style:

int CANL2_set_rcv_fifo_size (int FifoSize)

To accommodate to larger delays in processing the received
messages the Receive-FIFO in FIFO mode is configurable in
size for CANusb. CANL2_set_rcv_fifo_size must be called if
other sizes than the default size of 255 entries is to be used.

NOTE:
This function is only applicable in FIFO mode. It is only
supported by the Layer 2 API for CANusb.

Function Parameters:

- FifoSize:

The value defines the size of the Receive-FIFO as defined in
the following table:

Value No of entries
0 255 (default)
1 511
2 1023
3 2047
4 4095
5 8191
6 16383
7 32767
8 65535

Software description 119

Function Return Codes:

 0: Function successful
-1: The FIFO size can not be changed, because the

CAN controller is already online
-102: Parameter error
-1000: Invalid channel handle

120 Software description

1.7.5 CANL2Channel::CANL2_initialize_fifo_mode

Visual Basic style:

Public Function
CANL2_initialize_fifo_mode (
 ByVal pUserCfg As L2CONFIG) As Integer

C# style:

int CANL2_initialize_fifo_mode(L2CONFIG pUserCfg)

This function provides a fast and easy way to initialize a CAN
channel. After calling this function successfully sending and
receiving CAN messages in FIFO mode is possible.

If you don’t know exactly the appropriate values of the
members of L2CONFIG you can configure the channel by
using the SCIM (Softing CAN Interface Manager) in the
Settings of your PC. If you do not change the data members of
the class L2CONFIG the values from the SCIM configuration
will be used.

Function Parameters:

Table 1.7-2: CANL2_initialize_fifo_mode

Name Description Range
pUserCfg: Instance of the class

L2CONFIG
-

Software description 121

Elements of class L2CONFIG:

Element Description Range
Int32 s32Prescaler Prescaler [1..32]

or (-1)
Int32 s32Tseg1 CAN Time segment 1 [1..16]

or (-1)
Int32 s32Tseg2 CAN Time segment 2 [1..8]

or (-1)
Int32 s32Sjw Sync jump with [1..4]

or (-1)
Int32 s32Sam Number of samples [0..1]

or (-1)
Int32
s32AccCodeStd

Acceptance code for 11
bit Identifier

Range
of 11 bit
Id or (-
1)

Int32
s32AccMaskStd

Acceptance mask for 11
bit Identifier

Range
of 11 bit
Id or (-
1)

Int32
s32AccCodeXtd

Acceptance code for 29
bit Identifier

Range
of 29 bit
Id or (-
1)

Int32
s32AccMaskXtd

Acceptance mask for 29
bit Identifier

Range
of 29 bit
Id or (-
1)

Int32
s32OutputCtrl

Output Control Register [0..255]
or (-1)

bEnableAck Enable confirmation of
successfully sent CAN
message

TRUE
or
FALSE

122 Software description

bEnableErrorframe Enable the detection of
ERROR Frames on the
bus.

TRUE
or
FALSE

Function Return Codes:

 0: Function successful
-1: Function not successful
-102: Wrong Parameter
-104: Timeout firmware communication
-1000: Channel not initialized:

INIL2_initialize_channel() was not yet called
or a INIL2_close_channel() was done

Software description 123

1.7.6 CANL2Channel::CANL2_reset_chip

Visual Basic style:

Public Function CANL2_ reset_chip() As Integer

C# style:

int CANL2_ reset_chip (void)

This function terminates a possible bus operation and places
the CAN chip into reset status.

After reset the bit timing, acceptance register and output
control register have to be defined before the CAN controller is
started by the related API functions.

Function Return Codes:

 0: Function successful
-1: Function not successful
-104: Timeout firmware communication
-108: Wrong hardware; (CANcard2 or EDICcard2

with 25MHz instead of 24MHz)
-1000: Channel not initialized:

INIL2_initialize_channel() was not yet called
or a INIL2_close_channel() was done

124 Software description

1.7.7 CANL2Channel::CANL2_get_version

Visual Basic style:

Public Function
CANL2_get_version (
 ByRef sw_version As Integer,
 ByRef fw_version As Integer,
 ByRef hw_version As Integer,
 ByRef license As Integer,
 ByRef can_chip_type As Integer) As Integer

C# style:

int CANL2_get_version(

 ref int sw_version,
 ref int fw_version,
 ref int hw_version,
 ref int license,
 ref int can_chip_type);

This function provides useful information about the version
numbers of hard-, soft- and firmware, license and CAN chip
type of the CAN Interface.

Function Parameters:

• sw_version:

Pointer to the entry of the version number of driver software.

The number is encoded as sw_version / 100 as the main
version number; sw_version % 100 refers to the subordinate
part of the number.

• fw_version:

Pointer to the entry of the version number of the firmware.

Software description 125

The number is encoded as fw_version / 100 as the main
version number; fw_version % 100 refers to the subordinate
part of the number.

• hw_version:

Pointer to the entry of the version number of the hardware.

The number is encoded as hw_version % 0x100H as the main
version number; hw_version / 0x100H refers to the
subordinate part of the number.

126 Software description

• licence:

Pointer entry of the license type of the CAN-AC2-PCI

01H: Licensed for operation with interface software
02H: Licensed for operation with CANalyzer

software

• can_chip_type:

Pointer to entry containing the last four digits of the CAN chip
type.

can_chip_type: CAN

 5: NEC72005 (CANcard)

 161: Infineon XC161 TwinCAN controller

 (CAN-PROx-PC104+)

 (CAN-PROx-PCIe)

 1000: SJA1000 (CANcard-SJA)

 (CAN-AC2/PCI)

 527: Intel 82527 (CAN-AC2/527)

 200: Philips 82C200 (CAN-AC2)

Function Return Codes:

 0: Function successful
-1: Function not successful
-1000: Channel not initialized:

INIL2_initialize_channel() was not yet called
or a INIL2_close_channel() was done

Software description 127

1.7.8 CANL2Channel::CANL2_get_serial_number

Visual Basic style:

Public Function
CANL2_get_serial_number (
 ByRef SerialNumber As Integer) As Integer

C# style:

Int CANL2_get_serial_number(ref UInt32 SerialNumber)

This function returns the serial number of the Softing CAN
Interface card in SerialNumber.

Function Return Codes:

 0: Function successful
-1: Function not successful
-1000: Channel not initialized:

INIL2_initialize_channel() was not yet called
or a INIL2_close_channel() was done

128 Software description

1.7.9 CANL2Channel::CANL2_initialize_chip

Visual Basic style:

Public Function
CANL2_initialize_chip (
 ByVal presc As Integer,
 ByVal sjw As Integer,
 ByVal tseg1 As Integer,
 ByVal tseg2 As Integer,
 ByVal sam As Integer) As Integer

C# style:

int CANL2_initialize_chip(
 int presc,
 int sjw,
 int tseg1,
 int tseg2,
 int sam)

Function Parameters:

Table 1.7-2: Bit timing parameter

Name Description Range
presc: CAN-Prescaler [1..32] or

-1
sjw: CAN-Synchronisation-Jump-Width [1..4]

or (-1)
tseg1: CAN-Time-Segment 1 [1..16]

or (-1)
tseg2: CAN-Time-Segment 2 [1..8]

or (-1)
sam: Number of samples [0, 1]

or (-1)

Software description 129

The function defines the bit timing (baud rate) of the CAN chip.
Parameters presc, sjw, tseg1 and tseg2 represent logical
values that are used to describe the bit timing. These values
are converted and written to the bus timing register 1 and 2 of
the Philips SJA1000.

The baud rate is calculated by the following formula, whereby
certain limit conditions must be maintained:

 fcrystal
Baud rate = ---
 2 * presc * (1 + tseg1 + tseg2)

The crystal frequency fcrystal is 16 MHz.

The limitations of the bit timing of the used CAN controllers
lead to following conditions:

 8 ≤ (1+ tseg1 + tseg2) ≤ 25

 tseg1 + tseg2 ≥ 2 * sjw

 tseg2 ≥ sjw

The prescaler divides the crystal frequency by presc to build
the clock cycle time Δt.

The parameter sam defines how many samples are taken to
detect the bit level.

 sam = 0 → 1 sample (high speed buses)

 sam = 1 → 3 samples (low/medium speed buses)

The sampling point is defined at the edge between time
segment 1 and time segment 2. It is recommended to place
the sampling point between 50% and 80% of the bit time. At
high baud rates the communication is more stable if the
sample is taken in the last quarter of the bit time.

130 Software description

The synchronization jump width is used to compensate the
time shifts between the different CAN nodes in the network. It
defines the maximum number sync of clock cycles by which
the time segment 1 may be lengthened and time segment 2
shorted during resynchronization.

NOTE
A parameter value of (-1) means that the API retrieves the
used value from SCIM (Softing CAN Interface Manager).

Bit time

Δt

Tseg1 Tseg2

Sync.
Seg.

Sample point(s)

time

Fig. 1-8: Bit period

Software description 131

Table 1.7-3: Baud rate examples

baud rate presc sjw tseg1 tseg2
1 Mbaud 1 1 4 3
800 kBaud 1 1 6 3
500 kBaud 1 1 8 7
250 kBaud 2 1 8 7
125 kBaud 4 1 8 7
100 kBaud 4 4 11 8
10 kBaud 32 4 16 8

Function Return Codes:

 0: Initialization successful
-1: Function not successful
-102: Wrong parameter
-104: Timeout firmware communication
-1000: Channel not initialized:

INIL2_initialize_channel() was not yet called
or a INIL2_close_channel() was done

132 Software description

1.7.10 CANL2Channel::CANL2_set_output_control

Visual Basic style:

Public Function
CANL2_set_output_control (
 ByVal OutputControl As Integer) As Integer

C# style:

int CANL2_set_output_control (
 int OutputControl)

Function Parameters:

- OutputControl: Input/Output-Control-Register
[0 to FFHex or -1]

This function defines the setting of the Output Control Register
(OCR) of the CAN chip. This is used to adapt the CAN chip to
the physical bus interface being used.

If the CAN controller Philips SJA1000 is used with the CAN
High Speed interface (default) the output control register must
be set to a value of FBHex. If you like to adapt the interface to
a different bus physic consult the SJA data sheet for the
required OCR setting.

Setting the OCR=03H switches off the transmission lines Tx0
and Tx1 of the CAN controller. Thus, the Softing CAN
Interface card can’t send any data frame or any acknowledge
bit on received messages. Thus, the interface can monitor the
activities on the CAN network without influencing it.

The OCR specification of the Philips SJA1000 is described in
Table 1.7-4 to 1.7-7.

The default values for CAN High Speed can also be chosen
automatically by passing the default parameter -1 which
assures compatibility with other using CAN High Speed
Standard.

Software description 133

Function Return Codes:

 0: Function successful
-1: Function not successful
-102: Wrong parameter
-104: Timeout firmware communication
-1000: Channel not initialized:

INIL2_initialize_channel() was not yet called
or a INIL2_close_channel() was done

134 Software description

Output control specification of Philips SJA1000:

Table 1.7-4: Output control Philips SJA1000

Bit Function
7 OCTP1
6 OCTN1
5 OCPOL1
4 OCTP0
3 OCTN0
2 OCPOL0
1 OCMODE1
0 OCMODE0

Table 1.7-5: Output control mode of Philips SJA1000

OCMODE1 OCMODE0 Function
1 0 Normal Mode (TX0 and TX1

CAN Output)
1 1 Normal mode (Tx0 CAN Output,

TX1 Bus Clock)
0 0 not implemented
0 1 not implemented

The voltage levels at the CAN outputs TX0 and TX1 depend
on both the output configuration, which is determined by
OCTPx and OCTNx, and the output polarity, which is
determined by OCPOLx. Table 1.7-7 shows output status as
a function of these settings for Philips SJA00.

Software description 135

Table 1.7-6: Configuration of CAN output pins TX0 and TX1

Operating
Mode

O
C
T
P
x

O
C
T
N
x

O
C
P
O
L
x

TXD TPx TNx Level at TXx

FLOAT 0
0
0
0

0
0
0
0

0
0
1
1

0
1
0
1

off
off
off
off

off
off
off
off

high resistance
high resistance
high resistance
high resistance

PULL
DOWN

0
0
0
0

1
1
1
1

0
0
1
1

0
1
0
1

off
off
off
off

on
off
off
on

logic "0"
high resistance
high resistance
logic "0"

PULL UP 1
1
1
1

0
0
0
0

0
0
1
1

0
1
0
1

off
on
on
off

off
off
off
off

high resistance
logic "1"
logic "1"
high resistance

PUSH
PULL

1
1
1
1

1
1
1
1

0
0
1
1

0
1
0
1

off
on
on
off

on
off
off
on

logic "0"
logic "1"
logic "1"
logic "0"

TXx: Output pin x, x=0 for TX0, x=1 for TX1

TPx: Transistor that switches from supply voltage to TXx

TNx: Transistor that switches from TXx to ground

TXD: Data to be transmitted, 0=dominant, 1=recessive

136 Software description

1.7.11 CANL2Channel::CANL2_set_acceptance

Visual Basic style:

Public Function
CANL2_set_acceptance (
 ByVal AccCodeStd As UInteger,
 ByVal AccMaskStd As UInteger,
 ByVal AccCodeXtd As UInteger,
 ByVal AccMaskXtd As UInteger) As Integer

C# style:

int CANL2_set_acceptance(

 UInt32 AccCodeStd,
 UInt32 AccMaskStd,
 UInt32 AccCodeXtd,
 UInt32 AccMaskXtd)

Function Parameters:

Table 1.7-7: Filter parameters

Name Description Range
AccCodeStd: Acceptance code for

standard frames
[0 to 7FFHex]
or 0xFFFFFFFF

AccMaskStd: Acceptance mask for
standard frames

[0 to 7FFHex]
or 0xFFFFFFFF

AccCodeXtd: Acceptance code for
extended frames

[0 to 1FFFFFFFHex]
or 0xFFFFFFFF

AccMaskXtd: Acceptance mask for
extended frames

[0 to 1FFFFFFFHex]
or 0xFFFFFFFF

The function CANL2_set_acceptance initializes the
acceptance filter of the CAN controller.

Software description 137

The acceptance filter defines which identifiers should be
passed into the receive buffer of the CAN controller.

To receive an identifier all bits of the identifier that were
initialized as 1 in the acceptance mask must match the
corresponding bit in the acceptance code. A "0" in the
acceptance mask register means "Don't care" for the identifier
bit at this position.

The parameters are converted and written into the acceptance
code and mask registers of the Philips SJA1000.

NOTE
A parameter value of 0xFFFFFFFF means that the API
retrieves the used value from SCIM (Softing CAN Interface
Manager).

Function Return Codes:

 0: Function successful
-1: Function not successful
-104: Timeout firmware communication
-1000: Channel not initialized:

INIL2_initialize_channel() was not yet called
or a INIL2_close_channel() was done

138 Software description

1.7.12 CANL2Channel:: CANL2_enable_dyn_obj_buf

CANL2Channel::CANL2_enable_dyn_obj_buf

Visual Basic style:

Public Function CANL2_enable_dyn_obj_buf () As Integer

C# style:

int CANL2_enable_dyn_obj_buf(void)

CANL2_enable_dyn_obj_buf configures the API to run in
dynamic object buffer mode (see section 1.4.2). If this function
is not used, then the Softing CAN Interface card operates with
the static object buffer or in the FIFO mode (if
CANL2_enable_fifo has been called).

NOTE:
The static object buffer is usable for 29bit identifiers.

Parameters:

none

Function Return Codes:

 0: Function successful
-1: Function not successful
-104: Timeout firmware communication
-1000: Channel not initialized:

INIL2_initialize_channel() was not yet called
or a INIL2_close_channel() was done

Software description 139

1.7.13 CANL2Channel::CANL2_initialize_interface

Visual Basic style:

Public Function
CANL2_initialize_interface (
 ByVal ReceiveFifoEnable As Integer,
 ByVal ReceivePollAll As Integer,
 ByVal ReceiveEnableAll As Integer,
 ByVal ReceiveIntEnableAll As Integer,
 ByVal AutoRemoteEnableAll As Integer,
 ByVal TransmitReqFifoEnable As Integer,
 ByVal TransmitPollAll As Integer,
 ByVal TransmitAckEnableAll As Integer,
 ByVal TransmitAckFifoEnable As Integer,
 ByVal TransmitRmtFifoEnable As Integer) As Integer

C# style:

int CANL2_initialize_interface(

int ReceiveFifoEnable,
int ReceivePollAll,
int ReceiveEnableAll,
int ReceiveIntEnableAll,
int AutoRemoteEnableAll,
int TransmitReqFifoEnable,
int TransmitPollAll,
int TransmitAckEnableAll,
int TransmitAckFifoEnable,
int TransmitRmtFifoEnable)

CANL2_initialize_interface configures properties and structure
the object buffer (see sections 1.4.2 and 1.4.3). It may not be
used in FIFO operation.

• ReceiveFifoEnable:

Type of receive message handling from firmware to PC
application.

1: Receive messages of data frames or remote frames

140 Software description

are transferred to the PC through the receive
message FIFO (see section 1.4.1).

0: The PC ascertains receive messages of data frames
or remote frames by polling the objects in the receive
object lists using the function CANL2_read_ac (see
5.1.2 and 5.1.3). Under certain conditions this can
cause a longer running time of the function
CANL2_read_ac, and can therefore result in lower
throughput rates.

- ReceivePollAll:

This flag is only meaningful for ReceiveFifoEnable = 0 with
static object buffer (should be 0 with dynamic object buffer).

1: Polling of all receive objects when CANL2_read_ac is
called (see section 1.4.3)

0: Polling of only those receive objects which have been
defined using CANL2_define_object (see Section
1.4.2 and 1.4.3)

- ReceiveEnableAll:

This flag is only meaningful with static object buffer (must be 0
with dynamic object buffer).

1: All data frames and remote frames with standard
identifiers are received. No receive objects need to be
defined (However: CANL2_define_object can be used
nevertheless, in order to activate receive objects for
polling by the application under the conditions
ReceivePollAll = 0 and ReceiveFifoEnable = 0)

0: All receive objects that are passed to the PC must be
defined beforehand using CANL2_define_object.
Objects that are not defined using
CANL2_define_object are not received by the (filter
functionality).

Software description 141

- ReceiveIntEnableAll:

This flag is only meaningful while ReceiveEnableAll = 1 with
static object buffer (should be 0 with dynamic object buffer).

1: When receiving an arbitrary object (declared using
CANL2_define_object or if ReceiveEnableAll = 1) the
receive message is passed to the PC application.
Additionally, an interrupt is generated to the PC. The
application program can read the object using
CANL2_read_ac.

0: Receipt of an object is only reported to the PC (with
interrupt) if the object has been declared in
CANL2_define_object with ReceiveIntEnable = 1.
Otherwise the data of the object will indeed be
entered into object buffer (and they can be read using
CANL2_read_rcv_data), but no information is
generated for the application regarding receipt of the
object (readable by CANL2_read_ac).

- AutoRemoteEnableAll:

This flag is only meaningful while ReceiveEnableAll = 1 with
static object buffer (should be 0 with dynamic object buffer).

1: When receiving an arbitrary remote frame the
interface independently transmits a data frame with
the same identifier (see 5.1.3).

0: When receiving a remote frame the interface only
transmits a data frame with the same identifier if the
corresponding receive object has been declared in
CANL2_define_object with AutoRemoteEnable = 1.
Otherwise the remote frame is reported to the PC
(calling CANL2_read_ac or CANL2_read_rcv_data).
The PC must transmit an explicit response (data
frame) then.

142 Software description

NOTE:
A data frame is transmitted after the first call of
CANL2_supply_object_data or CANL2_write_object
initialized the object data. A remote frame arriving before
data initialization results in error report -6 in the function
CANL2_read_ac.

- TransmitReqFifoEnable:

1: Transmit jobs for data frames or remote frames are
transferred to the CAN bus through the transmit job
FIFO (see sections 1.4.2 and 1.4.3)

0: Transmit jobs for data frames or remote frames are
ascertained by the firmware by polling the objects in
the transmit object lists (see sections 1.4.2 and 1.4.3).

- TransmitPollAll:

This flag is only meaningful for TransmitReqFifoEnable = 0
with static object buffer (should be 0 with dynamic object
buffer).

1 Polling of all transmit objects (see section 1.4.3)
0: Polling of only those transmit objects that have been

defined using CANL2_define_object (see section
1.4.2 and 1.4.3)

Software description 143

- TransmitAckEnableAll:

1: The interface acknowledges (in conjunction with an
interrupt to the PC) all data frames and remote frames
after successful transmission on the bus. This
acknowledgment can be read in CANL2_read_ac or
CANL2_read_xmt_data (see section 1.4.2 and 1.4.3).

0: All objects whose data frames and remote frames are
to be acknowledged by the Interface after successful
transmission, must have been declared with the
parameter TransmitAckEnable=1 in
CANL2_define_object. Transmission of all other
objects is not reported to the application.

- TransmitAckFifoEnableAll:

1: Acknowledgements of transmitted data frames or
remote frames are transferred to the application
through the transmit-acknowledge-FIFO (see sections
1.4.2 and 1.4.3).

0: Acknowledgements of transmitted data frames or
remote frames are ascertained by polling of the
objects in the interface (see sections 1.4.2 and 1.4.3).
Under certain conditions this can cause a longer
running time of the function CANL2_read_ac and thus
lead to lower throughput rates of the interface.

144 Software description

- TransmitRmtFifoEnableAll:

This parameter selects the handling mechanism for objects
with Auto Remote Control configured (AutoRemoteEnable is
set).

1: Incoming remote frames are buffered in a FIFO and
are passed on for transmission of data frames (see
sections 1.4.2 and 1.4.3").

0: Incoming remote frames are stored in object lists,
which are polled for transmission of data frames (see
section 1.4.3").

Function Return Codes:

 0: Function successful
-1: Function not successful
-102: Wrong parameter
-104: Timeout firmware communication
-1000: Channel not initialized:

INIL2_initialize_channel() was not yet called
or a INIL2_close_channel() was done

Software description 145

1.7.14 CANL2Channel::CANL2_define_object

Visual Basic style:

Public Function
CANL2_define_object (
 ByVal Ident As UInteger,
 ByRef ObjectNumber As Integer,
 ByVal Type As Integer,
 ByVal ReceiveIntEnable As Integer,
 ByVal AutoRemoteEnable As Integer,
 ByVal TransmitAckEnable As Integer) As Integer

C# style:

int CANL2_define_object(

 unsigned long Ident,
 ref int ObjectNumber,
 int Type,
 int ReceiveIntEnable,
 int AutoRemoteEnable,
 int TransmitAckEnable)

The function CANL2_define_object defines and configures the
communication objects of the transmit and receive object lists
in object buffer mode.

In dynamic object buffer mode all used objects have to be
defined, while in static object buffer mode the function can be
used optionally for individual configuration of the object
handling.

In static object buffer mode the returned object number equals
the identifier. But in dynamic object buffer mode it corresponds
to the succession of definition in the related object list.

NOTE:
The API functions handle the objects by their object
number. Hence, the user is recommended to setup a table
of relations between identifier and object number in
dynamic object buffer mode.

146 Software description

Function Parameters:

- Ident:

Identifier

 [0 to 7FFHex] for standard objects
[0 to 1FFFFFFFHex] for extended objects

- ObjectNumber:

In the mode dynamic object buffer the object number in the
related object list is returned in this parameter. It is a handle
for the online access to this object (CANL2_send_object,
CANL2_read_rcv_data...).

The identifier itself will no longer be referenced. In the mode
static object buffer the object number is equally to the
identifier.

- Type:

Direction of transmission and type of identifier

0: Standard receive object: Data frames and remote
frames with standard identifiers (11 bit) can be
received.

1: Standard transmit object: Data frames and remote
frames with standard identifiers (11 bit) can be
transmitted.

2: Extended receive object: Data frames and remote
frames with extended identifiers (29 bit) can be
received.

3: Extended transmit object: Data frames and remote
frames with extended identifiers (29 bit) can be
transmitted.

Software description 147

- ReceiveIntEnable (only for receive objects):

1: When receiving an object with the identifier Ident the
receive message is passed to the PC application.
Additionally, an interrupt is generated to the PC. The
application program can read the object using
CANL2_read_ac.

0: After receipt of an object the object data are indeed
entered into object buffer (and they can be read using
CANL2_read_rcv_data), but no information is
generated for the application regarding receipt of the
object. No interrupt is generated to the PC.

- AutoRemoteEnable (only for receive objects):

1: When receiving a remote frame with the identifier
Ident the firmware transmits a data frame with the
same identifier independently form the PC (see
sections 1.4.2 and 1.4.3).

0: When receiving a remote frame the remote frame is
reported to the PC (can be read using
CANL2_read_ac or CANL2_read_rcv_data). The PC
must transmit an explicit response (data frame).

NOTE:
The remote frame is only answered automatically after
the first call of CANL2_supply_object_data or
CANL2_write_object. This assures that no non-initialized
data are transmitted. A remote frame arriving before the
first call of CANL2_supply_object_data or
CANL2_write_object results in error report -6 in the
function CANL2_read_ac. For the auto remote feature it is
necessary to define a transmit object as well as a receive
object with the same identifier.

148 Software description

- TransmitAckEnable (only for transmit objects):

1 A data frame or remote frame with the identifier Ident
is acknowledged (in conjunction with an interrupt to
the PC) after successful transmission. This
acknowledgement can be read using CANL2_read_ac
or CANL2_read_xmt_data (see 5.1.2 and 5.1.3).

0: A data frame or remote frame with the identifier Ident
is not acknowledged to the application after
successful transmission on the bus.

NOTE:
Please note that the objects defined first are also polled
first, and in this way a higher priority and a lower polling
time is maintained relative to the objects that follow. It is
sensible to define objects in the sequence of their
identifiers in order to make prioritization of objects with
low identifiers the same as on the CAN bus. This is true
for static as well as for dynamic object buffer mode.

Function Return Codes:

 0: Function successful
-1: Function not successful
-102: Wrong parameter
-104: Timeout firmware communication
-109 Dyn. Obj. buffer mode not enabled
-1000: Channel not initialized:

INIL2_initialize_channel() was not yet called
or a INIL2_close_channel() was done

Software description 149

1.7.15 CANL2Channel::CANL2_start_chip

Visual Basic style:

Public Function CANL2_start_chip () As Integer

C# style:

int CANL2_start_chip(void)

The function CANL2_start_chip puts the CAN controller into
operational mode. From now on transmit jobs can be issued
and reception of messages is monitored.

Parameters:

none

Function Return Codes:

 0: Function successful
-1: Function not successful
-104: Timeout firmware communication
-1000: Channel not initialized:

INIL2_initialize_channel() was not yet called
or a INIL2_close_channel() was done

150 Software description

1.7.16 CANL2Channel::CANL2_define_cyclic

Visual Basic style:

Public Function
CANL2_define_cyclic (
 ByVal ObjectNumber As Integer,
 ByVal Rate As UInteger,
 ByVal Cycles As UInteger) As Integer

C# style:

int CANL2_define_cyclic(

int ObjectNumber,
unsigned int Rate,
unsigned int Cycles)

The function CANL2_define_cyclic defines cyclic transmission
of a communication object for the CAN channel which was
previously defined by CANL2_define_object.

The cyclic transmission is started and stopped by the value of
Rate. The settings (transmission start/stop) are put into
operation by the first call of CANL2_send_object or
CANL2_write_object for the object after the definition call.

Alternatively, the cyclic transmission is stopped automatically if
the defined number of cycles Cycles is reached.

NOTE:
If defined and started a cyclic object has to be stopped
before any succeeding redefinition. Redefinition of the
cycle rate while running the transmission results in faulty
transmission.

The transmitted data contents are defined by
CANL2_supply_object or CANL2_write_object. They can be
modified during cyclic transmission as well.

Software description 151

NOTE:
This function can only be used in dynamic object buffer
mode.

Function Parameters:

- ObjectNumber:

 Object reference returned by CANL2_define_object.

- Cycles [0..65535]:

0: Unlimited cyclic repetition
1..65535: Number of cyclic repetitions

- Rate [0..65535]:

0: Disable cyclic transmission (stop)
1..65535: Transmission rate in ms

Function Return Codes:

 0: Function successful
-1: Function not successful
-104: Timeout firmware communication
-1000: Channel not initialized:

INIL2_initialize_channel() was not yet called
or a INIL2_close_channel() was done

152 Software description

1.7.17 CANL2Channel::CANL2_send_remote_object

Visual Basic style:

Public Function
CANL2_send_remote_object (
 ByVal ObjectNumber As Integer,
 ByVal DataLength As Integer) As Integer

C# style:

int CANL2_send_remote_object(

int ObjectNumber,
int DataLength)

Function Parameters:

- ObjectNumber: Object number
- DataLength: Number of data bytes

This function initiates transmission of a remote frame for a
transmit object specified by the object number. The remote
frame has a data length 0; however, the data length code is
physically transmitted with the data length code DataLength.

If TransmitFifoEnable is set the transmit job is entered into the
transmit FIFO. Otherwise the transmit request is registered in
the transmit object list to be polled by the firmware.

ObjectNumber is the reference to the object returned by
CANL2_define_object. In static object buffer mode it’s equal to
the CAN identifier, while in dynamic object buffer mode it
depends on the succession of definition (see sections 1.4.2
and 1.4.3).

NOTE:
This function can only be used in object buffer mode, not
in FIFO mode.

Software description 153

Function Return Codes:

 0: Function successful
-1: Function not successful
-104: Timeout firmware communication
-110 Last request still pending
-116 Transmit request FIFO overrun
-1000: Channel not initialized:

INIL2_initialize_channel() was not yet called
or a INIL2_close_channel() was done

154 Software description

1.7.18 CANL2Channel::CANL2_supply_object_data

Visual Basic style:

Public Function
CANL2_supply_object_data (
 ByVal ObjectNumber As Integer,
 ByVal DataLength As Integer,
 ByVal pData() As Byte) As Integer

C# style:

int CANL2_supply_object_data(

 int ObjectNumber,
int DataLength,
byte[] pData)

Function Parameters:

- ObjectNumber: Object number
- DataLength: Number of data bytes
- pData: Pointer to the address field of data to

be transmitted

This function enters current data into the object buffer of the
transmit object specified by ObjectNumber.

The data are not transmitted directly onto the bus, but rather
they are prepared for pickup by a remote frame (Auto Remote)
or a later transmit job (later: CANL2_send_object).

ObjectNumber is the reference to the object returned by
CANL2_define_object. In static object buffer mode it’s equal to
the CAN identifier, while in dynamic object buffer mode it
depends on the succession of definition (see sections 1.4.2
and 1.4.3).

NOTE:
This function can only be used in object buffer mode, not
in FIFO mode.

Software description 155

Function Return Codes:

 0: Function successful
-104: Timeout firmware communication
-110 Last request still pending
-115 Object is not defined
-1000: Channel not initialized:

INIL2_initialize_channel() was not yet called
or a INIL2_close_channel() was done

156 Software description

1.7.19 CANL2Channel::CANL2_supply_rcv_object_data

Visual Basic style:

Public Function
CANL2_supply_rcv_object_data (
 ByVal ObjectNumber As Integer,
 ByVal DataLength As Integer,
 ByVal pData() As Byte) As Integer

C# style:

int CANL2_supply_rcv_object_data(

 int ObjectNumber,
int DataLength,
byte[] pData),

Function Parameters:

- ObjectNumber: ObjectNumber
- DataLength: Number of data bytes
- pData: Pointer to the address field of data to

be written in the object buffer

This function enters new data into the object buffer of the
specified receive object.

This function can be used for initialization of receive objects in
order to get reasonable values even before the first reception
of a respective data frame took place.

ObjectNumber is the reference to the object returned by
CANL2_define_object. In static object buffer mode it’s equal to
the CAN identifier, while in dynamic object buffer mode it
depends on the succession of definition (see sections 1.4.2
and 1.4.3).

NOTE:
This function can only be used in object buffer mode, not
in FIFO mode.

Software description 157

Function Return Codes:

 0: Function successful
-104: Timeout firmware communication
-110 Last request still pending
-115 Object is not defined
-1000: Invalid channel handle

158 Software description

1.7.20 CANL2Channel::CANL2_send_object

Visual Basic style:

Public Function
CANL2_send_object (
 ByVal ObjectNumber As Integer,
 ByVal DataLength As Integer) As Integer

C# style:

int CANL2_send_object(

 int ObjectNumber,
int DataLength),

Function Parameters:

- ObjectNumber: ObjectNumber
- DataLength: Number of data bytes to be transmitted

This function transmits a data frame for the transmit object
specified by ObjectNumber. The data frame has a length of
DataLength bytes. The data transmitted are the last entered
into transmit object buffer using CANL2_supply_object_data
or CANL2_write_object.

If TransmitFifoEnable is set the transmit job is entered into the
transmit FIFO to be further processed. Otherwise the transmit
request is registered in the transmit object list to be polled by
the firmware.

ObjectNumber is the reference to the object returned by
CANL2_define_object. In static object buffer mode it’s equal to
the CAN identifier, while in dynamic object buffer mode it
depends on the succession of definition (see sections 1.4.2
and 1.4.3). CANL2_send_object transmits a data frame on
CAN channel 1, CANL2_send_object2 transmits a data frame
on CAN channel 2.

Software description 159

NOTE:
This function can only be used in object buffer mode, not
in FIFO mode.

Function Return Codes:

 0: Function successful
-104: Timeout firmware communication
-110 Last request still pending
-116 Transmit request FIFO overrun
-1000: Channel not initialized:

INIL2_initialize_channel() was not yet called
or a INIL2_close_channel() was done

160 Software description

1.7.21 CANL2Channel::CANL2_write_object

Visual Basic style:

Public Function
CANL2_write_object (
 ByVal ObjectNumber As Integer,
 ByVal DataLength As Integer,
 ByVal pData() As Byte) As Integer

C# style:

int CANL2_write_object(

 int ObjectNumber,
 int DataLength,
 byte[] pData),

Function Parameters:

- ObjectNumber: ObjectNumber
- DataLength: Number of data bytes
- pData: Pointer to the address field of data to

be transmitted

This function performs an update of the data in the object
buffer of the transmit object specified by ObjectNumber. Then
a data frame is transmitted with DataLength bytes.

If TransmitFifoEnable is set the transmit job is entered into the
transmit FIFO to be further processed. Otherwise the transmit
request is registered in the transmit object list to be polled by
the firmware.

ObjectNumber is the reference to the object returned by
CANL2_define_object. In static object buffer mode it’s equal to
the CAN identifier, while in dynamic object buffer mode it
depends on the succession of definition (see sections 1.4.2
and 1.4.3).

Software description 161

NOTE:
This function can only be used in object buffer mode, not
in FIFO mode.

Function Return Codes:

 0: Function successful
-104: Timeout firmware communication
-110 Last request still pending
-115 Object is not defined
-116 Transmit request FIFO overrun
-1000: Channel not initialized:

INIL2_initialize_channel() was not yet called
or a INIL2_close_channel() was done

162 Software description

1.7.22 CANL2Channel::CANL2_read_rcv_data

Visual Basic style:

Public Function
CANL2_read_rcv_data (
 ByVal ObjectNumber As Integer,
 ByRef pRCV_Data() As Byte,
 ByRef Time As UInteger) As Integer

C# style:

int CANL2_read_rcv_data(

int ObjectNumber,
ref byte[] pRCV_Data,
ref UInt32 Time)

Function Parameters:

- ObjectNumber: Object number
- pRCV_Data: Pointer to the address field of data

being received
- Time: Pointer to a time stamp parameter

This function copies the data of the receive object specified by
ObjectNumber to the address pRCV_Data. The data are read,
even if no new data were received. 8 data bytes are always
copied to pRCV_Data, independent of the length of the
received data frame.

If data in the object buffer are overwritten before they were
read by the application or a remote request is not read quickly
enough an overrun is signaled to the application by the
function return code (overrun in object buffer).

If a remote frame was received the user is informed by a
specific return code.

Time returns the instant of the last received data with a
resolution of 1 microsecond (time stamp is reset in
CANL2_start_chip).

Software description 163

ObjectNumber is the reference to the object returned by
CANL2_define_object. In static object buffer mode it’s equal to
the CAN identifier, while in dynamic object buffer mode it
depends on the succession of definition (see sections 1.4.2
and 1.4.3).

NOTE:
 This function can only be used in object buffer mode, not
in FIFO mode.

Function Return Codes:

 0: No new data received
 1: Data frame received
 2: Remote frame received
-104: Timeout firmware communication
-111: Receive data frame overrun
-112: Receive remote frame overrun
-113: Object is undefined
-1000: Channel not initialized:

INIL2_initialize_channel() was not yet called
or a INIL2_close_channel() was done

164 Software description

1.7.23 CANL2Channel::CANL2_read_xmt_data

Visual Basic style:

Public Function
CANL2_read_xmt_data (
 ByVal ObjectNumber As Integer,
 ByRef pDataLength As Integer,
 ByVal pXMT_Data () As Byte) As Integer

C# style:

int CANL2_read_xmt_data(

 int ObjectNumber,
ref int pDataLength,
byte[] pXMT_Data),

Function Parameters:

- ObjectNumber: ObjectNumber
- pDataLength: Pointer to entry of number of

transmitted data bytes
- pXMT_Data: Pointer to the address field of data to

be transmitted

This function reads the data and the initialized data length of
the transmit object specified by ObjectNumber. Further, it
checks whether a frame has been transmitted for this object.

If no transmission acknowledgments are returned by the
object the function return code 1 indicates that the last
transmit job was acknowledged by another CAN node. The
return code -1 means that the last transmission
acknowledgment has not been read by the application yet.

ObjectNumber is the reference to the object returned by
CANL2_define_object. In static object buffer mode it’s equal to
the CAN identifier, while in dynamic object buffer mode it
depends on the succession of definition (see sections 1.4.2
and 1.4.3).

Software description 165

NOTE:
This function can only be used in object buffer mode, not
in FIFO mode.

Function Return Codes:

 0: No message was transmitted
 1: Message was transmitted
-104: Timeout firmware communication
-114: Transmit acknowledge overrun
-1000: Channel not initialized:

INIL2_initialize_channel() was not yet called
or a INIL2_close_channel() was done

166 Software description

1.7.24 CANL2Channel::CANL2_send_data

Visual Basic style:

Public Function
CANL2_send_data (
 ByVal Ident As UInteger,
 ByVal Xtd As Integer,
 ByVal DataLength As Integer,
 ByVal pData () As Byte) As Integer

C# style:

int CANL2_send_data(

 unsigned long Ident,
 int Xtd,
 int DataLength,
 byte[] pData)

Function Parameters:

- Ident: Identifier
- Xtd: Identifier length

0: Standard Identifier
1: Extended Identifier

- DataLength: Number of data bytes to be transmitted
- pData: Pointer to the address field of the data

This function transmits a data frame with the passed
parameters on the CAN channel.

The transmit request is processed through the transmit FIFO.
If the FIFO is full the application is informed by the return
value.

Software description 167

NOTE:
The function CANL2_send_data can only be used in FIFO
mode, not in object buffer mode. The function
CANL2_send_data2 can only be used in FIFO mode or
static object buffer mode, not in dynamic object buffer
mode.

Function Return Codes:

 0: Function successful
-1: Function not successful
-104: Timeout firmware communication
-1000: Channel not initialized:

INIL2_initialize_channel() was not yet called
or a INIL2_close_channel() was done

168 Software description

1.7.25 CANL2Channel::CANL2_send_remote

Visual Basic style:

Public Function
CANL2_send_remote (
 ByVal Ident As UInteger,
 ByVal Xtd As Integer,
 ByVal DataLength As Integer) As Integer

C# style:

int CANL2_send_remote(

unsigned long Ident,
int Xtd,
int DataLength)

Function Parameters:

- Ident: Identifier
- Xtd: Identifier length

0: Standard Identifier
1: Extended Identifier

- DataLength: Number of data bytes requested remote

This function transmits a remote frame with the Identifier Ident
on the CAN channel. The remote frame has data length 0;
however, the data length specified by the parameter
DataLength is transmitted in the DLC field of the remote
frame.

The transmit request is processed through the transmit FIFO.
If the FIFO is full the application is informed by the return
value.

NOTE:
The function CANL2_send_remote can only be used in
FIFO mode, not in object buffer mode.

Software description 169

Function Return Codes:

 0: Function successful
-1: Function not successful
-104: Timeout firmware communication
-1000: Channel not initialized:

INIL2_initialize_channel() was not yet called
or a INIL2_close_channel() was done

170 Software description

1.7.26 CANL2Channel::CANL2_read_ac

Visual Basic style:

Public Function
CANL2_read_ac
 (ByVal param As PARAM_CLASS) As Integer

C# style:

int CANL2_read_ac(PARAM_CLASS param)

By calling this function the application is informed about data
transmission and reception as well as about various error
conditions and bus events.

Several different CAN events can be distinguished by
evaluation of the function return code (see Table 1.7-8).
Certain information and parameters of interest are transferred
in the elements of the parameter class PARAM_CLASS.

Members of PARAM_CLASS:

NOTE:
RC1 through RC12 in brackets specify the function return
codes of CANL2_read_ac for which the described
parameter is valid. The application should not evaluate
the parameter if it comes with a different function return
code than stated below.

• unsigned long Ident:

Identifier (FIFO mode) or object number (object buffer mode)
of the data or remote frame which was received or
successfully transmitted.

(RC1, RC2, RC3, RC8, RC9, RC10, RC11, RC12)

Software description 171

• int DataLength:

Number of received (RC1, RC9) or transmitted (RC3, RC10)
data bytes.

The DataLength of the received frame is only valid in FIFO
mode and should not be used in object buffer mode. In object
buffer mode the data length of the CAN messages should be
predefined by the project.

• int RecOverrun_flag:

The last received data of object Ident were not read by the PC
and were overwritten by the new data (RC1, RC2, RC9,
RC12). Only valid in object buffer mode.

• int RCV_fifo_lost_msg:

Number of lost messages in receive FIFO (RC1, RC2, RC8,
RC9, RC11, RC12). Only valid in FIFO mode.

• byte RCV_data[8]:

Data bytes of the received data frame (RC1, RC9).

• int AckOverrunFlag:

This flag is set if an unread transmit acknowledge for a
transmit object is overwritten by a new one (RC3, RC10). Only
valid in object buffer mode.

• int XMT_ack_fifo_lost_acks:

Number of lost acknowledges messages in transmit-
acknowledge-FIFO in object buffer mode due to FIFO
overrun(RC3, RC10).

Only valid in mode object buffer configured with
TransmitAckFifoEnable=1.

• int XMT_rmt_fifo_lost_remotes:

Number of lost jobs in remote transmit FIFO (RC4). Only valid
in object buffer mode initialized with
TransmitRmtFifoEnable=1.

172 Software description

• int Bus_state:

Returns the new CAN bus status if a status change occurred
(RC5).

0: error active

1: error passive

2: bus off

• int Error_state:

Not used. Only for conformity to CANcard and CAN-AC2 (ISA)
API.

• int can:

Number of CAN channel where the event occurred which is
defined by the function return code.

(RC1, RC2, RC3, RC4, RC5, RC7, RC8, RC9, RC10, RC11,
RC12,RC15)

• unsigned long Time:

Time stamp of signaled events with a resolution of 1µs. The
timer is reset in CANL2_start_chip. (RC1, RC2, RC9, RC12,
RC3, RC5, RC8, RC10, RC11, RC15)

Software description 173

Table 1.7-8: Function return codes of CANL2_read_ac

FRC Explanation
0: No new event
1: Standard data frame received
2: Standard remote frame received
3: Transmission of a standard data frame is confirmed
4: Overrun of the remote transmit FIFO. Only with

object buffer and auto remote feature.
5: Change of bus status
6: not implemented
7: Not used
8: Transmission of a standard remote frame is

confirmed.
9: Extended data frame received
10: Transmission of an extended data frame is

confirmed
11: Transmission of an extended remote frame is

confirmed
12: Extended remote frame received
13, 14 Not valid. Only useful with CANcard API
15: Error frame detected
-1: Function not successful
-104: Timeout firmware communication
-115: access to an abject denied, because the object has

not been initialized with data using
CANL2_supply_object()

-1000: Channel not initialized: INIL2_initialize_channel()
was not yet called or a INIL2_close_channel() was
done

174 Software description

1.7.27 CANL2Channel::CANL2_reinitialize

Visual Basic style:

Public Function CANL2_reinitialize () As Integer

C# style:

int CANL2_reinitialize(void);

CANL2_reinitialize stops the current online operation of the
specified CAN channel. Afterwards the operating mode and all
corresponding parameters can be set anew (see Fig. 1-5, 1-6,
1-7).

Parameters:

none

Function Return Codes:

 0: Function successful
-1: Function not successful
-104: Timeout firmware communication
-1000: Channel not initialized:

INIL2_initialize_channel() was not yet called
or a INIL2_close_channel() was done

Software description 175

1.7.28 CANL2Channel::CANL2_get_time

Visual Basic style:

Public Function
CANL2_get_time (ByRef time As UInteger) As Integer

C# style:

int CANL2_get_time(ref UInt32 time);

Function Parameters:

- time: Time (32bit) in µs

CANL2_get_time returns the 32bit time from the onboard timer
of the Softing CAN Interface card in the parameter time. The
unit of time is μs.

The timer is reset by CANL2_reset_chip.

Function Return Codes:

 0: Function successful
-1: Function not successful
-104: Timeout firmware communication
-1000: Channel not initialized:

INIL2_initialize_channel() was not yet called
or a INIL2_close_channel() was done

176 Software description

1.7.29 CANL2Channel::CANL2_get_bus_state

Visual Basic style:

Public Function CANL2_get_bus_state () As Integer

C# style:

int CANL2_get_bus_state(void);

Function Parameters:

void

CANL2_get_bus_state returns the current bus status of the
CAN controller.

If the CAN controller is in bus off state it must be reset and
started again to enable further access to the bus.

Function Return Codes:

 0: Error active
 1: Error passive
 2: Bus off
-1: Function not successful
-104: Timeout firmware communication
-1000: Channel not initialized:

INIL2_initialize_channel() was not yet called
or a INIL2_close_channel() was done

Software description 177

1.7.30 CANL2Channel::CANL2_reset_lost_msg_counter

Visual Basic style:

Public Function CANL2_reset_lost_msg_counter () As Integer

C# style:

int CANL2_reset_lost_msg_counter(void);

CANL2_reset_lost_msg_counter resets the counter for the
receive messages which were lost while the receive FIFO
remained full in FIFO mode.

The lost message counter is supplied in the PARAM_CLASS
class of CANL2_read_ac.

NOTE
This function is not useful in dynamic object buffer
mode.

Parameters:

none

Function Return Codes:

 0: Function successful
-1: Function not successful
-104: Timeout firmware communication
-1000: Channel not initialized:

INIL2_initialize_channel() was not yet called
or a INIL2_close_channel() was done

178 Software description

1.7.31 CANL2Channel::CANL2_read_rcv_fifo_level

Visual Basic style:

Public Function CANL2_read_rcv_fifo_level () As Integer

C# style:

int CANL2_read_rcv_fifo_level(void);

CANL2_read_rcv_fifo_level returns the number of events in
the receive FIFO waiting to be read by CANL2_read_ac.

The FIFO level can be reset to 0 by CANL2_reset_rcv_fifo
which clears the FIFO.

NOTE
This function is not useful in dynamic object buffer
mode.

Parameters:

none

Function Return Codes:

0 ... 154: Messages in receive FIFO
-1: Function not successful
-4: Timeout firmware communication
-99: Board not initialized:

INIL2_initialize_channel() was not yet called
or a INIL2_close_channel() was done

Software description 179

1.7.32 CANL2Channel::CANL2_reset_rcv_fifo

Visual Basic style:

Public Function CANL2_reset_rcv_fifo () As Integer

C# style:

int CANL2_reset_rcv_fifo(void);

CANL2_reset_rcv_fifo resets the receive fifo in FIFO mode.

NOTE
This function is not useful in dynamic object buffer
mode.

Parameters:

none

Function Return Codes:

 0: Function successful
-1: Function not successful
-3: Error accessing DPRAM
-4: Timeout firmware communication
-99: Board not initialized:

INIL2_initialize_channel() was not yet called
or a INIL2_close_channel() was done

180 Software description

1.7.33 CANL2Channel::CANL2_read_xmt_fifo_level

Visual Basic style:

Public Function CANL2_read_xmt_fifo_level () As Integer

C# style:

int CANL2_read_xmt_fifo_level(void);

CANL2_read_xmt_fifo_level returns the number of transmit
jobs in the transmit FIFO waiting to be transmitted by the
interface.

A pending transmission request which is already entered into
the transmit buffer of the CAN controller is not counted.

The FIFO level can be reset to 0 by CANL2_reset_xmt_fifo
which clears the FIFO.

NOTE
This function is not useful in dynamic object buffer
mode.

Parameters:

none

Function Return Codes:

0 ... n: Messages in receive FIFO
-1: Function not successful
-104: Timeout firmware communication
-1000: Channel not initialized:

INIL2_initialize_channel() was not yet called
or a INIL2_close_channel() was done

Software description 181

1.7.34 CANL2Channel::CANL2_reset_xmt_fifo

Visual Basic style:

Public Function CANL2_reset_xmt_fifo () As Integer

C# style:

int CANL2_reset_xmt_fifo(void);

CANL2_reset_xmt_fifo resets the transmit FIFO in FIFO
mode.

NOTE
This function is not useful in dynamic object buffer
mode.

Parameters:

none

Function Return Codes:

 0: Function successful
-1: Function not successful
-104: Timeout firmware communication
-1000: Channel not initialized:

INIL2_initialize_channel() was not yet called
or a INIL2_close_channel() was done

182 Software description

1.7.35 CANL2Channel::CANL2_init_signals

Visual Basic style:

Public Function CANL2_init_signals(
 ByVal ulChannelDirectionMask As UInteger,
 ByVal ulChannelOutputDefaults As UInteger) As Integer

C# style:

int CANL2_init_signals(
 UInt32 ulChannelDirectionMask,
 UInt32 ulChannelOutputDefaults);

NOTE
This function is for use with the Softing CAN lowspeed
module only! If no lowspeed module is installed, then this
function is not needed.

1.7.35.1 CAN Lowspeed module overview

Via CAN API, all status and control signals from and to the
module plug-in stations are made available for the user’s
convenience. In this manner, the user has all features of the
CAN Lowspeed Transceivers under his control; he can freely
determine the change of operating modes between CAN
Highspeed and CAN Lowspeed and read in the identifier of
the module, if necessary.

After a RESET of the CAN Interface card, the operating mode
CAN highspeed is set by default in the CAN Lowspeed
module. To permit access to the status and control signals
and switch over to the CAN Lowspeed mode, the possibility of
access to the signals of the module plug-in stations must first
be initialized. The read-in of the status signals and switching
of the control signals then takes place via read and write
functions.

Software description 183

The table 1.6.36 gives a survey of the configurations to be
selected during initialization of the read and write functions
and of the signal bit assignment to the connection pins of the
module plug-in stations and to the signals arriving there.

During reset, the signals are initialized in such a way that CAN
highspeed is selected and the two LS Transceivers are in the
sleep mode

The function initializes the direction of the signal and defines it
for further use.

1.7.35.2 How to use CANL2_init_signals

The function initializes the direction of the signal and defines it
for further use.

For operation of the CAN LS modules, the bits of the
parameter ”ulChannelDirectionMask” must be selected
according to table 1.6.36. The following applies to every bit
position:

 1 defines the signal direction as ”output”

 0 defines the signal direction as ”input”.

NOTE
Ports exclusively for input cannot be defined as outputs.
Unassigned bit positions can be defined as desired.
”Input” and ”output” are defined from the position of the
microprocessor C165 or XC161.

Operation of the CAN Lowspeed Module:

The parameter "ulChannelOutputDefaults" indicates the
default status at the output for the bit positions for which the
signal direction ”output” has been defined via
”ulChannelDirectionMask". (For the settings, see table 1.6.36;)

This table supplies information on the reset status = inactive
transceivers; the default status may deviate.)

184 Software description

 1 defines the default level "high" for an ”output”.

 0 defines the default level "low" for an ”output”.

The values of the bit positions for which the signal direction
”input” has been determined, are irrelevant.

This function must be called before CANL2_write_signals()
and CANL2_read_signals(), to setup the port pins of the
microcontroller on the CAN Interface board.

Function Return Codes:

 0: Function successful
-1: Error: signals have already been initialized
-2: An exclusive input port has been defined as

output.

-104: Timeout firmware communication
-1000: Invalid channel handle

Software description 185

NOTE
Execution of the initialization function
CANL2_init_signals() is permitted only once after loading
of the firmware into the Softing CAN Interface.
Reinitialization of the status and control signals is
possible only

The following table shows the Signal bit assignment to
control and status signals
Bit
pos.

Direction of
the signal

Reset
default
status

Description of the signal

0 Out-> H LS Transceiver signal:
EN (signal inverted,
resetlevel = L)

1 Out-> H LS Transceiver
signal:/STB (signal inverted, reset
level=L)

2 Out-> H HS/LS switchover (H = Highspeed)

3 Out-> H LS Transceiversignal: /WAKE

4 In <- H LS Transceiver signal: NERR

5 In <- H Module identifier bit 0=1

6 In <- L Module identifier bit 1=0

7 In <- L Module identifier bit 2=0

Table 1.6.36

Example:

Initialisation of the mowspeed module:

CANL2_init_signals(can, 0x0000000F, 0x00000004);
Switching to CAN lowspeed:
CANL2_write_signals(can, 0x00000000, 0x00000004);
Switching back to CAN highspeed:
CANL2_write_signals(can, 0x00000004, 0x00000004);

186 Software description

1.7.36 CANL2Channel::CANL2_read_signals

Visual Basic style:

Public Function CANL2_read_signals(
 ByRef ulChannelRead As UInteger) As Integer

C# style:

int CANL2_readt_signals(ref UInt32 ulChannelRead)

NOTE
This function is for use with the Softing CAN lowspeed
module only! If no lowspeed module is installed, then this
function is not needed.

The function reads in the current signal statuses. The
parameter ”ulChannelRead” is coded according to table
1.6.36.

The following applies to every bit position:

Operation of the CAN Lowspeed Module

 1 means that the signal level is ”high”.

 0 means that the signal level is ”low”.

If a signal has been defined as output, the output is read back
–if possible- or the value set and buffered last is returned.

Unassigned bit positions are evaluated at ”0”.

The function is useful to detect, whether a lowspeed
piggyback is installed on the hardware. If a lowspeed
piggyback is plugged, then the module identifier bit “bit0” is 1,
and the module identifier bits “bit1” and “bit2” are 0. (see table
1.6.36)

Function Return Codes:

 0: Function successful
-1: Error: signals have not yet been initialized

Software description 187

-104: Timeout firmware communication
-1000: Invalid channel handle

1.7.37 CANL2Channel::CANL2_write_signals

Visual Basic style:

Public Function CANL2_write_signals(
 ByVal ulChannelWrite As UInteger,
 ByVal ulCareMask As UInteger) As Integer

C# style:

int CANL2_write_signals(
 UInt32 ulChannelWrite,
 UInt32 ulCareMask);

NOTE
This function is for use with the Softing CAN lowspeed
module only! If no lowspeed module is installed, then this
function is not needed.

The function sets output signals according to the parameter
definition.

The parameters ”ulChannelWrite” and ”ulCareMask” are
coded according to table 1.6.36.

Signals set at ”0” in the ”ulCareMask” are ignored. Only those
signals are written which are set at ”1” in the ”ulCareMask”
parameter. For these signals, the parameter ”ulChannelWrite”
is evaluated and the following applies:

1 means that the signal level is set at ”high”.

0 means that the signal level is set at ”low”.

A write access to an unassigned bit position is ignored.

188 Software description

Function Return Codes:

 0: Function successful
-1: Error: signals have not yet been initialized,

this must be done by using
CANL2_init_signals()

-2: Error: write access to an input signal
-104: Timeout firmware communication
-1000: Invalid channel handle

Example: Lowspeed/Highspeed switchover:

Switching to CAN lowspeed:
CANL2_write_signals(can, 0x00000000, 0x00000004);
Switching back to CAN highspeed:
CANL2_write_signals(can, 0x00000004, 0x00000004);

Software description 189

1.7.38 CANL2Channel::INIL2_close_channel

Visual Basic style:

Public Function INIL2_close_channel () As Integer

C# style:

int INIL2_close_channel(void)

This function releases and unlocks the system resources
which were allocated by INIL2_initialize_channel.

The function call should be applied at any possible application
exit after successful call to INIL2_initialize_channel.
Otherwise, the application may have problems to get the
handle to the DPRAM a second time without system exit (e.g.
applications with LabVIEW a.o.).

Parameters:

none

Function Return Codes:

 0: Function successful
-1000: Channel not initialized:

INIL2_initialize_channel() was not yet called
or a INIL2_close_channel() was done

190 Software description

Index

Acceptance code50, 137
Acceptance mask50, 137
API Driver concept5
Auto remote control55, 141
Baud rate......................................43, 129
Board initialization18
Bus state.......................................91, 176
CAN controller38, 123
CAN controller type.....................41, 126
CAN database17
CAN High Speed46, 132
Can_test.exe...26
CANL2_define_cyclic64
CANL2_define_cyclic [.NET]...........150
CANL2_define_object59
CANL2_define_object [.NET]...........145
CANL2_enable_dyn_obj_buf52
CANL2_enable_dyn_obj_buf [.NET]138
CANL2_get_all_CAN_channels..........30
CANL2_get_all_CAN_channels [.NET]

...115
CANL2_get_bus_state91
CANL2_get_bus_state [.NET]...........176
CANL2_get_time.................................90
CANL2_get_time [.NET]175
CANL2_get_version39
CANL2_get_version [.NET]..............124
CANL2_init_signals98
CANL2_init_signals [.NET]182
CANL2_initialize_chip........................43
CANL2_initialize_chip [.NET]..........128
CANL2_initialize_fifo_mode35
CANL2_initialize_fifo_mode [.NET]120
CANL2_initialize_interface.................53
CANL2_initialize_interface [.NET] ..139
CANL2_read_ac83
CANL2_read_ac [.NET]....................170
CANL2_read_rcv_data76
CANL2_read_rcv_data [.NET]..........162
CANL2_read_rcv_fifo_level93

CANL2_read_rcv_fifo_level [.NET] 178
CANL2_read_signals 102
CANL2_read_signals [.NET]............ 186
CANL2_read_xmt_data 78
CANL2_read_xmt_data [.NET] 164
CANL2_read_xmt_fifo_level.............. 95
CANL2_read_xmt_fifo_level [.NET]180
CANL2_reinitialize 89
CANL2_reinitialize [.NET]............... 174
CANL2_reset_chip.............................. 38
CANL2_reset_chip [.NET] 123
CANL2_reset_lost_msg_counter 92
CANL2_reset_lost_msg_counter [.NET]

.. 177
CANL2_reset_rcv_fifo........................ 94
CANL2_reset_rcv_fifo [.NET] 179
CANL2_reset_xmt_fifo....................... 96
CANL2_reset_xmt_fifo [.NET] 181
CANL2_send_data 80
CANL2_send_data [.NET]................ 166
CANL2_send_object 72
CANL2_send_object [.NET]............. 158
CANL2_send_remote.......................... 82
CANL2_send_remote [.NET] 168
CANL2_send_remote_object 66
CANL2_send_remote_object [.NET] 152
CANL2_set_acceptance 50
CANL2_set_acceptance [.NET]........ 136
CANL2_set_interrupt_event 97
CANL2_set_output_control 46
CANL2_set_output_control [.NET] .. 132
CANL2_set_rcv_fifo_size................... 33
CANL2_set_rcv_fifo_size [.NET] 118
CANL2_set_serial_number 42
CANL2_set_serial_number [.NET]... 127
CANL2_start_chip 63
CANL2_start_chip [.NET] 149
CANL2_supply_object_data 68
CANL2_supply_object_data [.NET]. 154
CANL2_supply_rcv_object_data 70

Software description 191

CANL2_supply_rcv_object_data [.NET]
...156

CANL2_write_object74
CANL2_write_object [.NET]160
CANL2_write_signals103
CANL2_write_signals [.NET]...........187
Cyclic transmission......................64, 150
Data length........................... 83, 107, 171
DPRAM access............................27, 112
Driver version39, 124
Dynamic object buffer mode8
Exit board ..23
FIFO mode.......................................6, 18
FIFO mode structure..............................7
FIFO operation17
Firmware version39, 124
Hardware version.........................40, 125
Identifier 83, 107, 170
Implementation....................................18
INIL2_close_board105
INIL2_close_board [.NET]................189
INIL2_initialize_channel27
INIL2_initialize_channel [.NET].......112
Intempl.c ..26
Interrupt ...9, 97
Interrupt events25, 106
Interrupt programming.........................26
Interrupt service thread26
Lost messages 85, 108, 171

Object buffer17, 53, 139
Object buffer mode 20
Object lists .. 8
Object number............................. 59, 145
Object type 59, 145
Operational modes 6
Operational modes comparison 17
Output Control Register 46, 132
Overrun ... 17
Parameter structure 83
Polling ... 8, 12
Prescaler...................................... 44, 129
Receive events 6, 9, 14
Receive FIFO 6, 93, 178
Receive object list 9
Receive objects 54, 140
Remote frames 10
Sampling point 44, 129
Software description............................ 24
Static object buffer mode 12
Synchronization jump width 44, 130
Time segment 1........................... 44, 129
Time segment 2........................... 44, 129
Time stamp...........................87, 109, 172
Transmission request............................. 6
Transmission requests 8
Transmit acknowledges..................... 6, 9
Transmit FIFO......................... 6, 95, 180

	Contents
	CAN Layer 2 API - Software description
	1.1 Deployment
	1.2 System requirements
	1.3 Driver concept
	1.4 Operational modes of the interface
	1.4.1 FIFO mode
	1.4.1.1 Transmission request
	1.4.1.2 Receive events and transmit acknowledges

	1.4.2 Dynamic object buffer mode
	1.4.2.1 Transmission requests
	1.4.2.2 Transmit acknowledges
	1.4.2.3 Receive events
	1.4.2.4 Remote frames

	1.4.3 Static object buffer mode (only for 11-bit identifiers)
	1.4.3.1 Transmission request
	1.4.3.2 Transmit acknowledges
	1.4.3.3 Remote frames

	1.4.4 Comparison FIFO to object buffer mode

	1.5 Implementation
	1.5.1 Board initialization
	1.5.2 FIFO mode
	1.5.3 Object buffer mode
	1.5.4 Reinitialization and termination

	1.6 Description of the CAN Layer2 API
	1.6.1 About the CAN Layer2 API
	1.6.2 Interrupt processing
	1.6.2.1 Interrupt events
	1.6.2.2 Windows interrupt programming

	1.6.3 INIL2_initialize_channel
	1.6.4 CANL2_get_all_CAN_channels
	1.6.5 CANL2_set_rcv_fifo_size
	1.6.6 CANL2_initialize_fifo_mode
	1.6.7 CANL2_reset_chip
	1.6.8 CANL2_get_version
	1.6.9 CANL2_get_serial_number
	1.6.10 CANL2_initialize_chip
	1.6.11 CANL2_set_output_control
	1.6.12 CANL2_set_acceptance
	1.6.13 CANL2_enable_dyn_obj_buf
	1.6.14 CANL2_initialize_interface
	1.6.15 CANL2_define_object
	1.6.16 CANL2_start_chip
	1.6.17 CANL2_define_cyclic
	1.6.18 CANL2_send_remote_object
	1.6.19 CANL2_supply_object_data
	1.6.20 CANL2_supply_rcv_object_data
	1.6.21 CANL2_send_object
	1.6.22 CANL2_write_object
	1.6.23 CANL2_read_rcv_data
	1.6.24 CANL2_read_xmt_data
	1.6.25 CANL2_send_data
	1.6.26 CANL2_send_remote
	1.6.27 CANL2_read_ac
	1.6.28 CANL2_reinitialize
	1.6.29 CANL2_get_time
	1.6.30 CANL2_get_bus_state
	1.6.31 CANL2_reset_lost_msg_counter
	1.6.32 CANL2_read_rcv_fifo_level
	1.6.33 CANL2_reset_rcv_fifo
	1.6.34 CANL2_read_xmt_fifo_level
	1.6.35 CANL2_reset_xmt_fifo
	1.6.36 CANL2_set_interrupt_event
	1.6.37 CANL2_init_signals
	1.6.37.1 CAN Lowspeed module overview
	1.6.37.2 How to use CANL2_init_signals

	1.6.38 CANL2_read_signals
	1.6.39 CANL2_write_signals
	1.6.40 INIL2_close_channel

	1.7 Description of the Softing CAN class library
	1.7.1 Interrupt processing
	1.7.1.1 Interrupt events
	1.7.1.2 .Net interrupt programming

	1.7.2 CANL2Channel::INIL2_initialize_channel
	1.7.3 CANL2Channel::CANL2_get_all_CAN_channels
	1.7.4 CANL2Channel::CANL2_set_rcv_fifo_size
	1.7.5 CANL2Channel::CANL2_initialize_fifo_mode
	1.7.6 CANL2Channel::CANL2_reset_chip
	1.7.7 CANL2Channel::CANL2_get_version
	1.7.8 CANL2Channel::CANL2_get_serial_number
	1.7.9 CANL2Channel::CANL2_initialize_chip
	1.7.10 CANL2Channel::CANL2_set_output_control
	1.7.11 CANL2Channel::CANL2_set_acceptance
	1.7.12 CANL2Channel:: CANL2_enable_dyn_obj_buf
	1.7.13 CANL2Channel::CANL2_initialize_interface
	1.7.14 CANL2Channel::CANL2_define_object
	1.7.15 CANL2Channel::CANL2_start_chip
	1.7.16 CANL2Channel::CANL2_define_cyclic
	1.7.17 CANL2Channel::CANL2_send_remote_object
	1.7.18 CANL2Channel::CANL2_supply_object_data
	1.7.19 CANL2Channel::CANL2_supply_rcv_object_data
	1.7.20 CANL2Channel::CANL2_send_object
	1.7.21 CANL2Channel::CANL2_write_object
	1.7.22 CANL2Channel::CANL2_read_rcv_data
	1.7.23 CANL2Channel::CANL2_read_xmt_data
	
	1.7.24 CANL2Channel::CANL2_send_data
	1.7.25 CANL2Channel::CANL2_send_remote
	1.7.26 CANL2Channel::CANL2_read_ac
	1.7.27 CANL2Channel::CANL2_reinitialize
	1.7.28 CANL2Channel::CANL2_get_time
	1.7.29 CANL2Channel::CANL2_get_bus_state
	1.7.30 CANL2Channel::CANL2_reset_lost_msg_counter
	1.7.31 CANL2Channel::CANL2_read_rcv_fifo_level
	1.7.32 CANL2Channel::CANL2_reset_rcv_fifo
	1.7.33 CANL2Channel::CANL2_read_xmt_fifo_level
	1.7.34 CANL2Channel::CANL2_reset_xmt_fifo
	1.7.35 CANL2Channel::CANL2_init_signals
	1.7.35.1 CAN Lowspeed module overview
	1.7.35.2 How to use CANL2_init_signals

	1.7.36 CANL2Channel::CANL2_read_signals
	1.7.37 CANL2Channel::CANL2_write_signals
	1.7.38 CANL2Channel::INIL2_close_channel

	Index

