

PROFIBUS Application Program Interface

User Manual

Version 5.2
Rev. 06

Date: 24-February-2003

Softing AG
Richard-Reitzner-Allee 6
D-85540 Haar
Phone (++49) 89 45 65 6 - 0
Fax (++49) 89 45 65 6 - 399

 Copyright by Softing AG, 1989-2003
All rights reserved.

PROFIBUS User Manual

 PROFIBUS Application Program Interface

Copyright Notice

All rights are reserved. No part of these instructions may be reproduced (printed material,
photocopies, microfilm or other method) or processed, copied or distributed using electronic
systems in any form whatsoever without prior written permission of Softing AG.

The producer reserves the right to make changes to the scope of supply as well as changes to
technical data, even without prior notice.

A great deal of attention was made to the quality and functional integrity in designing,
manufacturing and testing the system. However, no liability can be assumed for potential errors
that might exist or for their effects. Should you find errors please inform your distributor of the
nature of the errors and the circumstances under which they occur. We will be responsive to all
reasonable ideas and will follow up on them, taking measures to improve the product if
necessary.

We call your attention to the fact that the company name and trademark as well as product
names are, as a rule, protected by trademark, patent and product brand laws.

Copyright 1989-2003 by Softing AG, Haar

User Manual

User Manual Page: 1

1 ABOUT THIS MANUAL

This user manual describes the PROFIBUS Application Program Interface and contains the following parts:

• Part 1: Software Installation

• Part 2: Driver Configuration

• Part 3: Application Program Interface

• Part 4: Basic Management Services

• Part 5: FMS Services

• Part 6: FM7 Services

• Part 7: DP Master Services

• Part 8: DP/V1-Master Services

• Part 9: FDL Services

• Part 10: DP-Slave Services

• Part 11: PROFIBUS Application Tools Library

2 RELATED PUBLICATIONS

This manual is written for the experienced C program developer and assumes the developer has a working
knowledge of the PROFIBUS EN 50170/2 standard.

• PROFIBUS Data Link Layer

• PROFIBUS Application Layer (FMS, FM7 and LLI))

• PROFIBUS DP

• PROFIBUS DP/V1 (PROFIBUS Draft Specification V1.13 March 7,1997).

• PROFIBUS Implemention Guides Version 2.2

 PROFIBUS Application Program Interface

Page: 2 PROFIBUS

3 RELEASE NOTES

• Version 5 contains the protocol components FAL (FMS, FM7), DP and FDL.

• From version 5.1 simultaneous operation of FAL, DP and FDL services is supported.

• From version 5.2 DP/V1 MSAC_C2 client services are supported.

• The software release, version 5.21, offers the following features:

• PROFI104, Softing’s PC/104 compliant board is supported

• PROFIcard is running with with Windows 95 PC Card Services (PCMCIA Card- and Socket
services), supporting Windows 95 Plug and Play.

• The Windows NT PROFIBUS driver is supporting PROFIboard, PROFIcard and PROF104.
Mixed usage of up to 10 boards of all three types in one PC is possible.

• The software releases, version 5.22 and version 5.23, offer the following features:

• The PROFIBUS Windows drivers (Windows 2000, Windows NT, Windows ME/9x) are
supporting the following boards:
- PROFIboard-ISA and PROFIboard-PCI
- PROFIcard
- PROF104 and PROFI104-S
- PROFIgate, Softing’s Ethernet gateway to PROFIBUS (only Windows 2000 / NT)
Mixed usage of up to 10 boards of all six types in one PC is possible.

• The PROFIBUS Windows drivers are now supporting the DP-Slave services

• The software release, version 5.24, supports the new PROFIcard 2.

• The software releases, version 5.25 and version 5.26, offers the following new features:

• The PROFIBUS Windows drivers are now running under Windows XP.

• FG-300 PROFIBUS, the new Ethernet gateway to PROFIBUS is supported.

User Manual

User Manual Page: 3

Remarks on DP/V1

Simultaneous operation of DP/V1 and FAL (FMS, FM7) services is not supported.

Remarks using PROFIcard / PROFIcard 2

Since PROFIcard / PROFIcard 2 is using Windows ME / 9x 32-Bit PC Card Services in Windows ME / 9x
environment, DOS applications for PROFIcard / PROFIcard 2 do not run in Windows ME / 9x environment. It
is recommended to use Windows 16/32 bit applications instead.

PROFIcard / PROFIcard 2 does not support DP-Slave services.

Remarks using PROFI104-S

PROFI104-S does not support FMS/DPV1 services

Remarks using FG300 PROFIBUS and PROFIgate

The usage of up to 255 connections to FG-300 PROFIBUS- or PROFIgate devices from one PC is possible.

PROFIBUS Application Program Interface

Software Installation

Version 5.2
Rev. 06

Date: 24-February-2003

Softing AG
Richard-Reitzner-Allee 6
D-85540 Haar
Phone (++49) 89 45 65 6 - 0
Fax (++49) 89 45 65 6 - 399

 Copyright by Softing AG, 1989-2003
All rights reserved.

PROFIBUS User Manual

PROFIBUS Application Program Interface

COPYRIGHT NOTICE

All rights are reserved. No part of these instructions may be reproduced (printed material,
photocopies, microfilm or other method) or processed, copied or distributed using electronic
systems in any form whatsoever without prior written permission of Softing AG.

The producer reserves the right to make changes to the scope of supply as well as changes to
technical data, even without prior notice.

A great deal of attention was made to the quality and functional integrity in designing,
manufacturing and testing the system. However, no liability can be assumed for potential errors
that might exist or for their effects. Should you find errors please inform your distributor of the
nature of the errors and the circumstances under which they occur. We will be responsive to all
reasonable ideas and will follow up on them, taking measures to improve the product if
necessary.

We call your attention to the fact that the company name and trademark as well as product
names are, as a rule, protected by trademark, patent and product brand laws.

Copyright 1989-2003 by Softing AG, Haar

Software Installation

User Manual Page: I

CONTENTS

1 SCOPE ...1

2 DELIVERABLES...1

3 SOFTWARE INSTALLATION ..3

3.1 REQUIREMENTS AND PREPARATION...3
3.2 WINDOWS XP, WINDOWS 2000 AND WINDOWS NT ..3

3.2.1 Installation procedure ..3
3.2.2 Uninstall support..4
3.2.3 Directory structure and installed files ..4

3.3 WINDOWS ME AND WINDOWS 9X ...9
3.3.1 Installation procedure ..9
3.4.2 Uninstall support..9
3.4.3 Directory structure and installed files ..10

4 FIRMWARE UPDATE ..14

4.1 WINDOWS XP, WINDOWS 2000 AND WINDOWS NT ..14
4.2 WINDOWS ME AND WINDOWS 9X ...14

Software Installation

User Manual Page: 1

1 SCOPE

This manual describes the installation of the PROFIBUS Application Program Interface (PAPI) software for
Microsoft operating systems on a PC/AT or compatible computer.

2 DELIVERABLES

Deliverables include the PROFIBUS Application Program Interface with the corresponding device drivers,
libraries and header files, sample programs in source code and (if necessary) the PROFIBUS protocol
firmware.

The PROFIBUS Application Layer Interface supports access of the following PROFIBUS functionalities:

• PROFIBUS DP and DP/V1

• PROFIBUS DP-Slave

• PROFIBUS Application Layer (FAL) with FMS and FM7 (FAL Management)

• PROFIBUS FDL (Direct access to Data Link Layer services)

Softing offers seven types of PROFIBUS interface boards for PC/AT or compatible computers:

• PROFIboard-ISA, a short-size ISA-Bus controller for a 16-bit-ISA slot

• PROFIboard-PCI, a PCI-Bus controller for a 32-bit-PCI slot

• PROFI104 and PROFI104-S, 16-bit PC/104-compliant boards

• PROFIcard / PROFIcard 2, Type II PC Cards

• FG-300 PROFIBUS and PROFIgate, Fieldbus Access via Ethernet

 PROFIBUS Application Program Interface

Page: 2 PROFIBUS

For the operating systems Windows XP, Windows 2000, Windows NT, Windows ME and Windows 9x, there
are only one package supporting all types of boards:

• PROFIBUS Application Program Interface (order no. PB-DMK)

The software package on the CD contains a installation program. Software and User Manual are put in a
bundle as "PROFIBUS Documentation and Media Kit".

Software Installation

User Manual Page: 3

3 SOFTWARE INSTALLATION

3.1 REQUIREMENTS AND PREPARATION

Hardware installation should be done prior to software installation. Please refer to the corresponding
hardware user manuals for PROFIboard (ISA, PCI), PROFI104, PROFIcard / PROFIcard 2 or FG-300
PROFIBUS / PROFIgate. The system requirements and the mechanicaly installation procedure are
described in detail in these documents.

3.2 WINDOWS XP, WINDOWS 2000 AND WINDOWS NT

3.2.1 Installation procedure

Perform the following steps to install the PROFIBUS Application Program Interface on your hard disk:

1. Always log on with administrator rights

2. Please close all applications, especially the Control Panel, during installation. If the Control Panel window
is not closed the PROFIBUS control panel applet cannot be installed.

3. Insert the "PROFIBUS Application Program Interface" CD into the CD-ROM drive.

4. Start the installation program SETUP.EXE from the CD using the Windows Explorer or File Manager by
simply double clicking the file SETUP.EXE.

5. Follow the online instructions of the installation program.

The installation program offers functions to

• Install the PROFIBUS Software Development Kit with:

- PAPI and PBTOOLS dynamic link libraries (.DLL)
- PAPI and PBTOOLS import libraries (.LIB)
- PAPI and PBTOOLS header files (.h)
- PAPI and PBTOOLS source files (.c, .rc)
- Samples source and header files

• Install the PROFIBUS Runtime System with:
- Windows Kernel mode device drivers.
- PROFIBUS protocol firmware.
- PAPI and PBTOOLS dynamic link libraries (DLL).
- Control Panel Applet to configure the device drivers

After the first software installation the system has to be restarted to take the PROFIBUS device drivers in
effect. Remove the installation diskette from the diskette drive and simply restart the system according to the
on-screen instructions. When the system restarts, Windows will load the PROFIBUS device drivers and then
open the PROFIBUS Control Panel Applet to configure the PROFIBUS device drivers.

 PROFIBUS Application Program Interface

Page: 4 PROFIBUS

3.2.2 Uninstall support

- To uninstall the PROFIBUS software, open the Control Panel and double-click the “Add / Remove
Programs“ icon.

- Select “PROFIBUS Runtime System“ to remove it from computer.

- Select “PROFIBUS Software Development Kit“ to remove it from the computer.

3.2.3 Directory structure and installed files

This section describes the directory structure of the PROFIBUS Runtime System and the PROFIBUS
Software Development Kit after installation on hard disk.

3.2.3.1 PROFIBUS Runtime System

The PROFIBUS Runtime System is installed in the following directories:

<system directory>\SYSTEM32\DRIVERS PROFIBUS kernel mode drivers
 PROFIBRD.SYS PROFIBUS hardware driver
 PROFIPRT.SYS PROFIBUS protocol driver
 PROFIPNP.SYS PROFIBUS PnP hardware driver (only Windows XP

and Windows 2000)

<system directory>\SYSTEM32 PROFIBUS operating system components
 PBCPL.CPL PROFIBUS control panel applet
 PAPI.DLL PROFIBUS API dynamic link library
 PAPITH32.DLL PROFIBUS API 16Bit->32Bit thunk dynamic link

library
 PBTOOLS.DLL PROFIBUS Tools dynamic link library

<common files directory>
\SOFTING\PROFIBUS\RTS\FIRMWARE

PROFIBUS firmware files

 *.SBN PROFIBUS firmware files

Software Installation

User Manual Page: 5

3.2.3.2 PROFIBUS Software Development Kit

The main directory of the PROFIBUS Software Development Kit (SDK) is installed in the selected installation
directory and has the following directory structure:

- <installation directory>\SDK\DDB PROFIBUS device data base
- <installation directory>\SDK\DOC PROFIBUS documentation
- <installation directory>\SDK\PAPI PROFIBUS Application Program Interface
- <installation directory>\SDK\SAMPLES PROFIBUS sample programs

PROFIBUS Device Data Base (DDB)

.\SDK\DDB PROFIBUS device data base
 SOFTB203.GSD DP-Master device description for PROFIboard and

PROFI104
 SOFTB204.GSD DP-Master device description for PROFIcard /

PROFIcard 2
 SOFTB205.GSD DP-Slave device description for PROFIboard,

PROFI104 and PROFI104-S

PROFIBUS Documentation

.\SDK\DOC PROFIBUS documentation
 PBDMKMAN.PDF PROFIBUS Application Program Interface user

manual

PROFIBUS Application Program Interface (PAPI)

.\SDK\PAPI PROFIBUS Application Program Interface

.\SDK\PAPI\INC_GLB Global header files
 KEYWORDS.H Source file keywords
 PB_IF.H Global PROFIBUS API function prototypes,

constants and data types
 PB_TYPE.H Compiler-independent standard data types
 PB_CONF.H Constants for implementation and configuration
 PB_FMB.H FMB service-specific constants and data types
 PB_FMS.H FMS service-specific constants and data types
 PB_FM7.H FM7 service-specific constants and data types
 PB_DP.H DP-Master service-specific constants and data types
 PB_DPS.H DP-Slave service-specific constants and data types
 PB_FDL.H FDL service-specific constants and data types
 PB_ERR.H Error constants and data types
 PB_NTDRV.H PROFIBUS WinNT/Win2K drivers constants and

data types

 PROFIBUS Application Program Interface

Page: 6 PROFIBUS

.\SDK\PAPI\WIN32 Libraries
 PAPI.LIB PAPI 32 Bit import library
 PAPI.DLL PAPI 32 Bit dynamic link library
 PAPITH32.DLL PAPI 16Bit->32Bit thunk dynamic link library
 PBTOOLS.LIB PROFIBUS Tools 32 Bit import library
 PBTOOLS.DLL PROFIBUS Tools 32 Bit dynamic link library

.\SDK\PAPI\WIN16 Libraries
 PAPI_L.LIB PAPI 16 Bit import library
 PAPI_L.DLL PAPI 16 Bit dynamic link library
 PBT_L.LIB PROFIBUS Tools 16 Bit import library
 PBT_L.DLL PROFIBUS Tools 16 Bitdynamic link library

.\SDK\PAPI\SRC Source files
 PAPI.C Global PAPI functions
 PAPIAUX.C Global help functions
 FMBGDL.C FMB specific help functions
 FMSGDL.C FMS specific help functions
 FM7GDL.C FM7 specific help functions
 DPGDL.C DP-Master specific help functions
 DPSGDL.C DP-Slave specific help functions
 FDLGDL.C FDL specific help functions
 PAPI.RC PAPI resource file
 PBTOOLS.RC PBTOOLS resource file

 BUSPARAM.C Help functions to calculate the default bus

parameters
 CCRL.C Help functions to calculate CRL resources

.\SDK\PAPI\INC Local header files
 BUILDNR.PAPI.H PAPI version build number
 BUILDNR.PBTOOLS.H PBTOOLS version build number
 RESOURCE.H Common resource file
 VERSION.H Version string

.\SDK\PAPI\DEF Definition files
 PAPI.DEF PAPI definition file
 PBTOOLS.DEF PBTOOLS definition file

.\SDK\PAPI\MAKE Generation files
 PAPI.MAK Make file for generating the PAPI dynamic link

library
 PBTOOLS.MAK Make file for generating PBTOOLS dynamic link

library

Software Installation

User Manual Page: 7

PROFIBUS Sample programs

.\SDK\SAMPLES\DPDEMONT DP master sample program

.\SDK\SAMPLES\DPDEMONT\SRC
 DPDEMONT.C Sample main program
 DPLAYER.C DP master specific services
 FMBLAYER.C FMB specific services

.\SDK\SAMPLES\DPDEMONT\INC
 DPDEMONT.H Configuration data for DP master and the DP

slaves

.\SDK\SAMPLES\DPDEMONT\MAKE
 DPDEMONT.MAK Make file for generating DPDEMONT sample

program

.\SDK\SAMPLES\DPSDEMONT DP slave sample program

.\SDK\SAMPLES\DPSDEMONT\SRC
 DPSDEMONT.C Sample main program
 DPSLAYER.C DP slave specific services

.\SDK\SAMPLES\DPSDEMO\INC
 DPSDEMONT.H Global function prototypes

.\SDK\SAMPLES\DPSDEMO\MAKE
 DPSDEMONT.MAK Make file for generating DPSDEMONT sample

program

.\SDK\SAMPLES\DPDEMO DP master sample program

.\SDK\SAMPLES\DPDEMO\SRC
 DPDEMO.C Sample main program

.\SDK\SAMPLES\DPDEMO\INC
 DPDEMO.H Configuration data for DP master and the DP slaves

.\SDK\SAMPLES\DPDEMO\MAKE
 DPDEMO.MAK Make file for generating DPDEMO sample program

.\SDK\SAMPLES\DPSDEMO DP slave sample program

.\SDK\SAMPLES\DPSDEMO\SRC
 DPSFRAME.C Sample main program
 DPSPROFI.C DP slave specific services
 DPSSCHED.C Shcedule funcions

.\SDK\SAMPLES\DPSDEMO\INC
 DPSFRAME.H Global function prototypes
 DPSPROFI.H Global function prototypes
 DPSSCHED.H Global function prototypes

.\SDK\SAMPLES\DPSDEMO\MAKE

 PROFIBUS Application Program Interface

Page: 8 PROFIBUS

 DPSDEMO.MAK Make file for generating DPSDEMO sample program

.\SDK\SAMPLES\DPV1DEMO DPV1 master sample program

.\SDK\SAMPLES\DPV1DEMO\SRC
 DPV1DEMO.C Sample main program

.\SDK\SAMPLES\DPV1DEMO\INC
 DPV1DEMO.H Configuration data for DP master and the DP slaves

.\SDK\SAMPLES\DPV1DEMO\MAKE
 DPV1DEMO.MAK Make file for generating DPV1DEMO sample program

.\SDK\SAMPLES\FMSDEMO FMS sample program

.\SDK\SAMPLES\FMSDEMO\SRC
 FMSDEMO.C Sample program

.\SDK\SAMPLES\FMSDEMO\MAKE
 FMSDEMO.MAK Make file for generating FMSDEMO sample program

.\SDK\SAMPLES\FDLDEMO FDL sample program

.\SDK\SAMPLES\FMSDEMO\SRC
 FDLDEMO.C Sample program

.\SDK\SAMPLES\FMSDEMO\MAKE
 FDLDEMO.MAK Make file for generating FDLDEMO sample program

.\SDK\SAMPLES\WIN32 Executable sample programs
 DPDEMONT.EXE DP master sample program (Win32-Interface)
 DPSDEMONT.EXE DP slave sample program (Win32-Interface)
 DPDEMO.EXE DP master sample program (PAPI)
 DPSDEMO.EXE DP slave sample program (PAPI)
 DPV1DEMO.EXE DPV1 master sample program (PAPI)
 FMSDEMO.EXE FMSDEMO sample program (PAPI)
 FDLDEMO.EXE FDLDEMO sample program (PAPI)
 README.TXT Notes on how to start the sample programs

Software Installation

User Manual Page: 9

3.3 WINDOWS ME AND WINDOWS 9X

3.3.1 Installation procedure

Perform the following steps to install the PROFIBUS Application Program Interface on your hard disk:

1. Please close all applications, especially the Control Panel, during installation. If the Control Panel
window is not closed the PROFIBUS control panel applet cannot be installed.

2. Insert the "PROFIBUS Application Program Interface" CD into the CD-ROM drive.

3. Start the installation program SETUP.EXE from the CD using the Windows Explorer or File Manager by
simply double clicking the file SETUP.EXE.

4. Follow the online instructions of the installation program.

The installation program offers functions to

• Install the PROFIBUS Software Development Kit with:

- PAPI and PBTOOLS dynamic link libraries (.DLL)
- PAPI and PBTOOLS import libraries (.LIB)
- PAPI and PBTOOLS header files (.h)
- Samples source and header files

• Install the PROFIBUS Runtime System with:
- Windows 95 virtual device driver.
- PROFIBUS protocol firmware.
- PAPI and PBTOOLS dynamic link libraries (DLL).
- Control Panel Applet to configure the device drivers

After the first software installation the system has to be restarted to take the PROFIBUS device driver in
effect. Remove the installation diskette from the diskette drive and simply restart the system according to the
on-screen instructions. When the system restarts, Windows ME or Windows 9x will load the PROFIBUS
device driver and then open the PROFIBUS Control Panel Applet to configure the PROFIBUS device
drivers.

3.4.2 Uninstall support

To uninstall the PROFIBUS software, open the Control Panel and double-click the “Software“ icon.

- Select “PROFIBUS Runtime System“ to remove it from the computer.

- Select “PROFIBUS Software Development Kit“ to remove it from the computer

 PROFIBUS Application Program Interface

Page: 10 PROFIBUS

3.4.3 Directory structure and installed files

This section describes the directory structure of the PROFIBUS Runtime System and the PROFIBUS
Software Development Kit after installation on hard disk.

3.4.3.1 PROFIBUS Windows Runtime System

The PROFIBUS Runtime System is installed in the following directories:

<system directory>\SYSTEM PROFIBUS virtual device driver
 PROFIBRD.VXD PROFIBUS virtual device driver

<system directory>\SYSTEM PROFIBUS operating system components
 PBCPL.CPL PROFIBUS control panel applet
 PROFIBRD.DLL PROFIBUS Driver dynamic link library
 PAPI.DLL PROFIBUS API dynamic link library
 PAPITH32.DLL PROFIBUS API THUNK dynamic link library
 PBTOOLS.DLL PROFIBUS Tools dynamic link library

<common files directory>
SOFTING\PROFIBUS\RTS\FIRMWARE

PROFIBUS firmware files

 *.SBN PROFIBUS firmware files

Software Installation

User Manual Page: 11

3.4.3.2 PROFIBUS Software Development Kit

The main directory of the PROFIBUS Software Development Kit (SDK) is installed in the selected installation
directory and has the following directory structure:

- <installation directory>\SDK\DDB PROFIBUS device data base
- <installation directory>\SDK\DOC PROFIBUS documentation
- <installation directory>\SDK\PAPI PROFIBUS Application Program Interface
- <installation directory>\SDK\SAMPLES PROFIBUS sample programs

PROFIBUS Device Data Base (DDB)

.\SDK\DDB PROFIBUS device data base
 SOFTB203.GSD DP-Master device description for PROFIboard and

PROFI104
 SOFTB204.GSD DP-Master device description for PROFIcard /

PROFIcard 2
 SOFTB205.GSD DP-Slave device description for PROFIboard,

PROFI104 and PROFI104-S

PROFIBUS Documentation

.\SDK\DOC PROFIBUS documentation
 PBDMKMAN.PDF PROFIBUS Application Program Interface user

manual

PROFIBUS Application Program Interface (PAPI)

.\SDK\PAPI PROFIBUS Application Program Interface

.\SDK\PAPI\INC_GLB Global header files
 KEYWORDS.H Source file keywords
 PB_IF.H Global PROFIBUS API function prototypes,

constants and data types
 PB_TYPE.H Compiler-independent standard data types
 PB_CONF.H Constants for implementation and configuration
 PB_FMB.H FMB service-specific constants and data types
 PB_FMS.H FMS service-specific constants and data types
 PB_FM7.H FM7 service-specific constants and data types
 PB_DP.H DP-Master service-specific constants and data types
 PB_DPS.H DP-Slave service-specific constants and data types
 PB_FDL.H FDL service-specific constants and data types
 PB_ERR.H Error constants and data types

 PROFIBUS Application Program Interface

Page: 12 PROFIBUS

.\SDK\PAPI\WIN16 Libraries
 PAPI_L.LIB PAPI import library
 PAPI_L..DLL PAPI dynamic link library
 PBT_L.LIB PROFIBUS Tools import library
 PBT_L.DLL PROFIBUS Tools dynamic link library

.\SDK\PAPI\WIN32 Source files
 PAPI.LIB PAPI import library
 PAPI.DLL PAPI dynamic link library
 PAPITH32.DLL PAPI thunk dynamic link library
 PBTOOLS.LIB PROFIBUS Tools import library
 PBTOOLS.DLL PROFIBUS Tools dynamic link library

PROFIBUS Sample programs

.\SDK\SAMPLES\DPDEMO DP master sample program

.\SDK\SAMPLES\DPDEMO\SRC
 DPDEMO.C Sample main program

.\SDK\SAMPLES\DPDEMO\INC
 DPDEMO.H Configuration data for DP master and the DP slaves

.\SDK\SAMPLES\DPDEMO\MAKE
 DPDEMO.MAK Make file for generating DPDEMO sample program

.\SDK\SAMPLES\DPV1DEMO DPV1 master sample program

.\SDK\SAMPLES\DPV1DEMO\SRC
 DPV1DEMO.C Sample main program

.\SDK\SAMPLES\DPV1DEMO\INC
 DPV1DEMO.H Configuration data for DP master and the DP slaves

.\SDK\SAMPLES\DPV1DEMO\MAKE
 DPV1DEMO.MAK Make file for generating DPV1DEMO sample

program

.\SDK\SAMPLES\FMSDEMO FMS sample program

.\SDK\SAMPLES\FMSDEMO\SRC
 FMSDEMO.C Sample program

.\SDK\SAMPLES\FMSDEMO\MAKE
 FMSDEMO.MAK Make file for generating FMSDEMO sample program

Software Installation

User Manual Page: 13

.\SDK\SAMPLES\FDLDEMO FDL sample program

.\SDK\SAMPLES\FMSDEMO\SRC
 FDLDEMO.C Sample program

.\SDK\SAMPLES\FMSDEMO\MAKE
 FDLDEMO.MAK Make file for generating FDLDEMO sample

program

.\SDK\SAMPLES\WIN32 Executable sample programs
 DPDEMO.EXE DP master sample program
 DPSDEMO.EXE DP slave sample program
 DPV1DEMO.EXE DPV1 master sample program
 FMSDEMO.EXE FMSDEMO sample program
 FDLDEMO.EXE FDLDEMO sample program
 README.TXT Notes on how to start the sample programs

 PROFIBUS Application Program Interface

Page: 14 PROFIBUS

4 FIRMWARE UPDATE

4.1 WINDOWS XP, WINDOWS 2000 AND WINDOWS NT

The firmware update will be done automatically by the PROFIBUS hardware driver, if the version of the
installed firmware file and the firmware on the PROFIBUS interface differ.

4.2 WINDOWS ME AND WINDOWS 9X

Use the PROFIBUS control panel applet, located in the ‘Control Panel’ directory, to update the firmware onto
the PROFIBUS interface. Open the PROFIBUS control panel applet by simply double click the ”PROFIBUS”
icon and select the PROFIBUS interface(s) and click the Update Firmware... button to download the current
PROFIBUS firmware onto the PROFIBUS interface(s).

PROFIBUS Application Program Interface

Driver Configuration

Version 5.2
Rev. 01

Date: 24-February-2003

Softing AG
Richard-Reitzner-Allee 6
D-85540 Haar
Phone (++49) 89 - 4 56 56-0
Fax (++49) 89 - 4 56 56-399

 Copyright by Softing AG, 2000-2003
All rights reserved.

PROFIBUS User Manual

PROFIBUS Application Program Interface

Copyright Notice

All rights are reserved. No part of these instructions may be reproduced (printed material,
photocopies, microfilm or other method) or processed, copied or distributed using electronic
systems in any form whatsoever without prior written permission of Softing AG.

The producer reserves the right to make changes to the scope of supply as well as changes to
technical data, even without prior notice.

A great deal of attention was made to the quality and functional integrity in designing,
manufacturing and testing the system. However, no liability can be assumed for potential errors
that might exist or for their effects. Should you find errors please inform your distributor of the
nature of the errors and the circumstances under which they occur. We will be responsive to all
reasonable ideas and will follow up on them, taking measures to improve the product if
necessary.

We call your attention to the fact that the company name and trademark as well as product
names are, as a rule, protected by trademark, patent and product brand laws.

Copyright 2000-2003 by Softing AG, Haar

 Driver Configuration

CONTENTS

1. GENERAL ...1

2. HARDWARE RESOURCES ...1

2.1 PROFIBOARD-ISA, PROFI104 AND PROF104-S..1
2.2 PROFICARD..1
2.3 PROFIBOARD-PCI ..2

3. PROFIBUS CONTROL PANEL APPLET..3

3.1 OVERVIEW..3
3.1.1 PROFIBUS tree..4
3.1.2 Information area ...4
3.1.3 Status bar ...4
3.1.4 Buttons ...5

3.2 SCAN NODES ..5
3.3 UPDATE FIRMWARE ...5
3.4 ADD- AND EDIT A PROFIBUS INTERFACE..5

3.4.1 Select Node Name ..6
3.4.2 Select Operating Mode ..7
3.4.3 PROFIboard-ISA, PROFI104 and PROFI104-S parameters...8
3.4.4 PROFIcard / PROFIcard 2 parameters..9

3.4.4.1 PROFIcard / PROFIcard 2 parameters using Windows XP, Windows 2000 or
 Windows ME/9x...9
3.4.4.2 PROFIcard / PROFIcard 2 parameters using Windows NT10

3.4.4.2.1 PROFIcard / PROFIcard 2 software interface10
3.4.4.2.2 PROFIcard / PROFIcard 2 (NT standard) ..11
3.4.4.2.3 PROFIcard / PROFIcard 2 (Cardware)...12

3.4.5 PROFIboard-PCI parameters...13
3.4.6 PROFIgate / FG-300 parameters...14

3.4.6.1 PROFIgate / FG-300 address...14
3.4.6.2 Timeout parameters for PROFIgate / FG-300..15

3.5 REMOVE A PROFIBUS INTERFACE ...16

PROFIBUS User Manual Page: I

PROFIBUS Application Program Interface

Page: 2 PROFIBUS

 Driver Configuration

1. GENERAL

Using Windows 32-Bit operating systems (Windows XP, Windows 2000, Windows NT or Windows ME/9x)
the PROFIBUS device drivers must be configured before starting any PROFIBUS application.

Use the PROFIBUS control panel applet, located in the ‘Control Panel’ directory, to configure the PROFIBUS
device drivers. The configuration procedure is explained in detail in chapter 3.

2. HARDWARE RESOURCES

2.1 PROFIBOARD-ISA, PROFI104 AND PROF104-S

I/O port address

Each board requires 4 bytes of I/O port address space. The I/O port address of each board has to be
selected by means of switches on the board prior to installing the hardware. See the hardware installation
manual for more information.

Dual-port memory (DP-RAM)

Data exchange between board and PC occurs by means of a dual ported RAM (DP-RAM), which is mapped
onto the upper memory area of the PC at a selectable location between the addresses 0xC8000 and
0xFFFFF. Each board requires 16 KBytes. This area must not be used by any other device. The address of
this area will be configured during PROFIBUS device driver configuration.

Interrupt request lines

Each board requires one of the following ISA bus interrupt request lines (IRQ): 5, 10, 11, 12 or 15 for
exclusive use. Because of the ISA bus architecture, each IRQ can be used only by one hardware device.
The IRQ line for each board will be configured during PROFIBUS hardware driver configuration.

2.2 PROFICARD

PC Card attribute memory (Windows NT)

The PROFIcard enabled with the standard Windows NT mechanism needs 4 KBytes of the upper memory
area of the PC at a selectable location between the addresses 0xC8000 and 0xFFFFF. This memory area is
used to access the attribute memory of PROFIcard. The address of this area will be configured during the
PROFIBUS device driver configuration.

Dual-port memory (DP-RAM)

Data exchange between PROFIcard and PC occurs by means of a dual ported RAM (DP-RAM), which is
mapped onto the upper memory area of the PC at a selectable location between the addresses 0xC8000
and 0xFFFFF. PROFIcard requires 16 KBytes. This area must not be used by any other device. The address
of this area will be configured during the PROFIBUS device driver configuration.

User Manual Page: 1

PROFIBUS Application Program Interface

Page: 2 PROFIBUS

Interrupt request lines

PROFIcard requires one ISA bus interrupt request line (IRQ) for exclusive use. Because of the ISA bus
architecture, each IRQ can be used only by one hardware device. The PROFIcard can use any IRQ line.
The IRQ line will be configured during the PROFIBUS device driver configuration.

2.3 PROFIBOARD-PCI

Dual-port memory (DP-RAM)

Data exchange between PROFIboard-PCI and PC occurs by means of a dual ported RAM (DP-RAM), which
is mapped automatically to a memory location in the 32-bit address space of the PC. PROFIboard-PCI
requires 16 respectively 32 KBytes. The address space will be configured automatically loading the
PROFIBUS device driver.

Interrupt request lines

PROFIboard-PCI requires a PCI bus interrupt request line (IRQ) for shareable use. The IRQ line will be
configured automatically loading the PROFIBUS device driver.

NOTE:
Use the "Windows Diagnostics" program included in Windows to determine free I/O ports, memory
and IRQs for each PROFIBUS hardware installed.

CAUTION:
As with similar programs, the "Windows Diagnostics" can detect used IRQs and memory only if they
are used in your current Windows installation by any kernel mode driver or by the kernel itself. If any
hardware device is installed on your system (on the ISA bus or the motherboard) which uses a
resource and this resource is not used by the system, it cannot be detected as "used IRQ" or "used
memory" and, therefore, is displayed as "free". Use of such a resource for a PROFIboard may not
function.

 Driver Configuration

3. PROFIBUS CONTROL PANEL APPLET

Use the PROFIBUS control panel applet to configure the parameters of the PROFIBUS device driver. The
PROFIBUS control panel applet is installed in the ”Control Panel” during the installation procedure. To start
the PROFIBUS control panel applet, simply double click the ”PROFIBUS” icon.

3.1 OVERVIEW

The user interface of the PROFIBUS control panel behaves like a standard Windows MDI (Multiple
Document Interface) application. It consists of the PROFIBUS tree, push buttons and an information area
where hardware specific configuration parameters will be displayed.

User Manual Page: 3

PROFIBUS Application Program Interface

Page: 4 PROFIBUS

3.1.1 PROFIBUS tree

The PROFIBUS tree displays all configured PROFIBUS nodes with their current status subdivided into the
following hardware (board) categories:

• PROFIboard-ISA (ISA version of PROFIboard with PROFIBUS FMS/DPV1 Master or DP Slave stack)

• PROFI104 (PC104 board with PROFIBUS FMS/DPV1 Master or DP Slave stack)

• PROFI104-S (PC104 board with PROFIBUS DP Slave stack)

• PROFIboard-PCI (PCI version of PROFIboard with PROFIBUS FMS/DPV1 Master or DP Slave stack)

• PROFIcard / PROFIcard 2 (PC card with PROFIBUS FMS/DPV1 Master stack)

• PROFIgate / FG-300 (PROFIBUS-Ethernet-Gateway with FMS/DPV1 Master or DP Slave stack)

These categories form the first level of the PROFIBUS tree and indicate the possible types of hardware
interfaces. They appear at any time regardless whether such hardware interfaces are actually installed or
not.

A PROFIBUS node is a PROFIBUS device acting as Master or Slave. PROFIboard-ISA, PROFIcard /
PROFIcard 2, PROFI104 and PROFIgate / FG-300 can act as single node, PROFIboard-PCI has two
channels and therefore can act as two nodes.

When a PROFIBUS node of a certain hardware category has been configured, the category will be displayed
in bold letters and a node icon will appear below that category. A configured node is a node known to the
PROFIBUS device driver. Depending on the state of the node, three different icons are used to display a
node:

• The icon indicates that the PROFIBUS node is working properly.
• The icon indicates that the PROFIBUS node is not working properly.
• The icon indicates that the PROFIBUS node is configured but not yet checked.

3.1.2 Information area

Main settings (firmware type, firmware version, resources, device names, ...) of the PROFIBUS node
configuration are displayed in the information area.

3.1.3 Status bar

The current status of a PROFIBUS node is displayed in the status bar.

 Driver Configuration

3.1.4 Buttons

The buttons in the PROFIBUS Control Panel have the following meaning:

Add Click the Add button to add a new PROFIBUS node to the PROFIBUS tree.

Edit Click the Edit button to modify the settings of an existing PROFIBUS node in the
PROFIBUS tree.

Remove Click the Remove button to remove a PROFIBUS node from the PROFIBUS tree.

Scan Nodes Click the Scan Nodes button to search and configure automatically all plugged
PROFIBUS interfaces (boards) in the PC (only Windows XP, Windows 2000 and
Windows NT).

Update Firmware Click the Update Firmware button to download the current PROFIBUS firmware onto
the selected PROFIBUS interfaces (boards) in the PC (only Windows ME and
Windows 9x).

OK Click the OK button to save the current configuration settings and to load the device
drivers

Cancel Click the Cancel button to recover the last configuration settings and to load the
device drivers

Apply Click the Apply button to apply the configuration settings and load the device drivers

The procedure to add or edit a node or to scan automatically for nodes will be explained in detail in the
following paragraphs.

3.2 SCAN NODES (ONLY WINDOWS XP, WINDOWS 2000 AND WINDOWS NT)

Clicking the Scan Nodes... button the PROFIBUS hardware device driver searches for all PROFIBUS
interfaces (boards) installed in your PC. All necessary resources like dual-ported-RAM, IO ports, interrupts,
etc. will be determined automatically by the hardware device driver.

Depending on the hardware configuration, the scan process may take some time and it is indicated by a
clock symbol.

3.3 UPDATE FIRMWARE (ONLY WINDOWS ME AND WINDOWS 9X)

Click the Update Firmware... button to download the current PROFIBUS firmware onto the selected
PROFIBUS interfaces (boards) in the PC.

3.4 ADD- AND EDIT A PROFIBUS INTERFACE

Click the Add button to configure the hardware device driver for a new PROFIBUS interface.

At first, you will be asked to select the type of the interface board you want to configure.

Then, you may enter a symbolic name new node.

The remaining dialogs depend on the type of interface board. They are explained in detail in the sections
below (3.4.1 to 3.4.6).

User Manual Page: 5

PROFIBUS Application Program Interface

Page: 6 PROFIBUS

Using the Edit button an existing hardware device driver configuration of a PROFIBUS interface board can
be modified. You may modify the node name and other parameter which depend on the type of the interface
board.

The dialogs for modifying a node are the same as for adding a new node. They are explained in detail in the
sections below (3.4.1 to 3.4.6).

3.4.1 Select Node Name (only Windows XP, Windows 2000 and Windows NT)

To access a logical PROFIBUS device from an application, a unique Win32 device name is required. In
addition to the standard Win32 device name, assigned automatically by the PROFIBUS hardware device
driver, a Win32 alias device name can be defined optionally.

Enter a symbolic node name in the edit field, click the Next button to continue the configuration. Click the
Cancel button to abort the configuration and return to the main dialog.

 Driver Configuration

3.4.2 Select Operating Mode

A PROFIBUS interface can operate either as FMS / DPV1 Master or as DP Slave device.

Select the desired operating mode, click the Next button to continue the configuration. Click the Back button
to return to the previous dialog. Use the Cancel button to abort the configuration and to return to the main
dialog.

NOTE: PROFIcard / PROFIcard 2 supports only FMS / DPV1 Master operating mode.
PROFI104-S supports only DP Slave operating mode

CAUTION: Changing the operating mode causes the hardware driver to download the selected firmware
onto the PROFIBUS board. The existing firmware on the board will be overwritten!!!.

User Manual Page: 7

PROFIBUS Application Program Interface

Page: 8 PROFIBUS

3.4.3 PROFIboard-ISA, PROFI104 and PROFI104-S parameters

Accessing PROFIboard-ISA, PROFI104 or PROFI104-S the PROFIBUS hardware device driver has to
allocate resources like I/O ports, address space for the dual ported RAM and interrupt lines.

IO-Port Address: The I/O base address of the board. The auto-detection searches only the area
between 0x200 and 0x3FC. To specify an address outside that range enter the base
address in the edit box. Refer to the hardware installation manual for more
information about valid I/O base addresses.

DP RAM Address: Address of the dual ported memory (see chapter 2.1 hardware resources).

Interrupt: IRQ line (see chapter 2.1 hardware resources).

When selecting auto the PROFIBUS hardware driver determines the necessary resources of the PROFIBUS
board.

Select the resources, click the Finish button to complete the configuration and return to the main dialog .
Click the Back button to return to the previous dialog. Use the Cancel button to abort the configuration and to
return to the main dialog.

 Driver Configuration

3.4.4 PROFIcard / PROFIcard 2 parameters

3.4.4.1 PROFIcard / PROFIcard 2 parameters using Windows XP, Windows 2000 or
 Windows ME/9x

Accessing PROFIcard the PROFIBUS device driver has to allocate resources for the PC Card.

PCMCIA Socket: Socket number of PROFIcard . This value is only needed to link an interface (board)
number of the driver to the PC Card slot number where the PC Card is inserted.
When a PROFIcard is inserted into the PC Card slot, the driver searches the
parameters for a PC Card configured for this socket.

Select the resources, click the Finish button to complete the configuration and to return to the main dialog.
Click the Back button to return to the previous dialog. Use the Cancel button to abort the configuration and to
return to the main dialog.

User Manual Page: 9

PROFIBUS Application Program Interface

Page: 10 PROFIBUS

3.4.4.2 PROFIcard / PROFIcard 2 parameters using Windows NT

3.4.4.2.1 PROFIcard / PROFIcard 2 software interface

The PROFIBUS hardware device driver provides two mechanism for accessing PROFIcard :

• The standard Windows NT enabling mechanism for PC Cards

• PC Card software ”CardWare for Windows NT” by Award Software International Inc.

Using the standard Windows NT enabling mechanism for PC Cards only one PROFIcard can be used. The
PROFIcard must be inserted at boot time.

Select the desired PC Card software interface, click the Next button to continue the configuration. Click the
Back button to return to the previous dialog. Use the Cancel button to abort the configuration and to return to
the main dialog.

 Driver Configuration

3.4.4.2.2 PROFIcard / PROFIcard 2 (NT standard)

Accessing PROFIcard using the Windows NT PC Card enabler the PROFIBUS hardware device driver has
to allocate resources for PROFIcard.

Attribute Memory PC Card attribute memory (see chapter 2.2 hardware resources).

DP RAM Address Address of the dual ported memory (see chapter 2.2 hardware resources).

Interrupt IRQ line (see chapter 2.2 hardware resources).

The PROFIBUS hardware device driver cannot provide auto detection of the resources, except the interrupt
resource. You have to specify the physical values. You can configure only one ”PROFIcard (NT standard)”,
because the standard NT PC Card enabling mechanism supports only one PROFIcard. You can’t configure
a mixture of both PROFIcard solutions (PROFIcard (NT standard) and PROFIcard (Cardware)) with one
installation.

Select the resources, click the Finish button to complete the configuration and return to the main dialog .
Click the Back button to return to the previous dialog. Use the Cancel button to abort the configuration and to
return to the main dialog.

CAUTION: The Windows NT PC Card device driver starts during the boot process. Make sure to
configure only free resources, because your system might not boot with an inserted
card (e.g. if you have configured the PROFIcard (NT standard) using the interrupt of
the SCSI controller the system will hang-up during start-up).

User Manual Page: 11

PROFIBUS Application Program Interface

Page: 12 PROFIBUS

3.4.4.2.3 PROFIcard / PROFIcard 2 (Cardware)

Accessing PROFIcard using the “Award Cardware for Windows NT” the PROFIBUS hardware device driver
has to allocate resources for PROFIcard.

PCMCIA Socket: Socket number of PROFIcard. This value is only needed to link an interface (board)
number of the driver to the PC Card slot number where PROFIcard is inserted.
When a PROFIcard is inserted into the PC Card slot, the driver searches the
parameters for a PROFIcard configured for this socket.

DP RAM Address: Address of the dual ported memory (see chapter 2.2 hardware resources).

Interrupt: The PROFIBUS hardware driver determines automatically the IRQ line.

Select the resources, click the Finish button to complete the configuration and to return to the main dialog.
Click the Back button to return to the previous dialog. Use the Cancel button to abort the configuration and to
return to the main dialog.

 Driver Configuration

3.4.5 PROFIboard-PCI parameters

A PROFIboard-PCI interface contains one or two channels, where each channel represents a node in the
PROFIBUS network.

PCI Slot PCI slot number where the interface is plugged in.

Channel Channel number (only dual channel PROFIboard-PCI board).

Click the Finish button to complete the configuration and return to the main dialog . Click the Back button to
return to the previous dialog. Use the Cancel button to abort the configuration and to return to the main
dialog.

User Manual Page: 13

PROFIBUS Application Program Interface

Page: 14 PROFIBUS

3.4.6 PROFIgate / FG-300 parameters

3.4.6.1 PROFIgate / FG-300 address

The PROFIBUS Driver for Windows XP, Windows 2000 and Windows NT is capable of accessing a remote
PROFIgate / FG-300 PROFIBUS-Ethernet-Gateway over a TCP/IP network and to treat it like a local
PROFIBUS interface. This requires the IP address or the IP host name of PROFIgate / FG-300 to be known
to the driver.

Enter the host name (if the IP network has a name server) or the IP address assigned to PROFIgate / FG-
300 in the edit field,

The FG-3000 PROFIBUS-Ethernet-Gateway contains up to three PROFIBUS interfaces, where each
interface represents a node on the bus acting either as FMS/DPV1 master or as DP Slave. Select the
desired PROFIBUS interface.

Click the Next button to continue the configuration. Click the Cancel button to abort the configuration and to
return to the main dialog.

 Driver Configuration

3.4.6.2 Timeout parameters for PROFIgate / FG-300

For proper communication with PROFIgate / FG-300 it is necessary to define some timeout values.

Timeout for Connect Time control interval for monitoring of connection establishment to
PROFIgate / FG-300.

Max Idle Time Time control interval to monitor the connection.

DP Update Interval Update interval time for exchanging the DP process image. The process
image will only be transferred if data have changed.

Forced DP Update Interval Forced update interval time for exchanging the DP process image
(regardless whether data have changed or not).

Enter the desired values, click the Finish button to complete the configuration and return to the main dialog .
Click the Back button to return to the previous dialog. Using the Cancel button you can abort the
configuration and return to the main dialog.

User Manual Page: 15

PROFIBUS Application Program Interface

Page: 16 PROFIBUS

3.5 REMOVE A PROFIBUS INTERFACE

Click the Remove button to remove a PROFIBUS interface from the PROFIBUS tree. After removing an
interface click the Apply button to apply the new configuration and to reload the device drivers.

PROFIBUS Application Program Interface

User Interface

Version 5.2
Rev. 05

Date: 24-February-2003

Softing AG
Richard-Reitzner-Allee 6
D-85540 Haar
Phone (++49) 89 45 65 6 - 0
Fax (++49) 89 45 65 6 - 399

 Copyright by Softing AG, 1989-2003
All rights reserved.

PROFIBUS User Manual

PROFIBUS Application Program Interface

Copyright Notice

All rights are reserved. No part of these instructions may be reproduced (printed material,
photocopies, microfilm or other method) or processed, copied or distributed using electronic
systems in any form whatsoever without prior written permission of Softing AG.

The producer reserves the right to make changes to the scope of supply as well as changes to
technical data, even without prior notice.

A great deal of attention was made to the quality and functional integrity in designing,
manufacturing and testing the system. However, no liability can be assumed for potential errors
that might exist or for their effects. Should you find errors please inform your distributor of the
nature of the errors and the circumstances under which they occur. We will be responsive to all
reasonable ideas and will follow up on them, taking measures to improve the product if
necessary.

We call your attention to the fact that the company name and trademark as well as product
names are, as a rule, protected by trademark, patent and product brand laws.

Copyright 1989-2003 by Softing AG, Haar

User Interface

User Manual Page: I

CONTENTS

1 SCOPE ...1

2 OVERVIEW ..2

3 USER INTERFACE USING WINDOWS ME / 9X ..3

3.1 INITIALIZATION AND SHUT DOWN..3
3.1.1 Profi-Init and Profi-Set-Default...3
3.1.2 Profi-End ..4

3.2 SEND / RECEIVE INTERFACE..5
3.2.1 PROFIBUS Service Description Block ..6
3.2.2 Profi-Snd-Req-Res ..7
3.2.3 Profi-Rcv-Con-Ind ..8

3.3 DATA INTERFACE ...9
3.3.1 Profi-Set-Data ..10
3.3.2 Profi-Get-Data..11
3.3.3 Profi-Set-Dps-Input-Data ...12
3.3.4 Profi-Get-Dps-Input-Data...13
3.3.5 Profi-Get-Dps-Output-Data ..14

3.4 ADDITIONAL INTERFACE FUNCTIONS...15
3.4.1 Profi-Ack-Irq ...15
3.4.2 Profi-Get-Versions ...16
3.4.3 Profi-Get-Serial-Device-Number..17
3.4.4 Profi-GetLast-Error...18

3.5 INTERFACE RETURN VALUES ..19

4 USER INTERFACE USING WINDOWS XP, WINDOWS 2000 OR WINDOWS NT21

4.1 LOGICAL DEVICES..22
4.1.1 Directory structure of logical devices...22
4.1.2 Low-level devices...23
4.1.3 Management devices...24
4.1.4 Data-oriented high-level devices ...28
4.1.5 Service-oriented high-level devices...29
4.1.6 Access rights..32

PROFIBUS Application Program Interface

Page: II PROFIBUS

4.2 PROGRAM INTERFACES ... 33
4.2.1 Data structures.. 34
4.3.1 CreateFile.. 36
4.3.2 CloseHandle.. 39
4.3.3 GetLastError.. 41
4.3.4 DeviceIoControl... 43
4.3.5 ReadFile .. 50
4.3.6 ReadFileEx.. 53
4.3.7 WriteFile .. 55
4.3.8 WriteFileEx.. 58
4.3.9 GetOverlappedResult.. 60
4.3.10 SetFilePointer.. 62
4.3.11 FileIOCompletionRoutine.. 64

4.4 PROFIBUS APPLICATION PROGRAM INTERFACE... 66
4.4.1 Initialization and Shut down .. 67
4.4.2 Send / Receive Interface... 71
4.4.3 Data Interface.. 75
4.4.4 Additional Interface Functions... 85

4.5 ENHANCED PROFIBUS APPLICATION PROGRAM INTERFACE.. 87
4.5.1 Profi-Open-Basic-Management .. 88
4.5.2 Profi-Open... 90
4.5.3 Profi-Close... 92
4.5.4 Profi-Write-Service .. 93
4.5.5 Profi-Read-Service.. 94
4.5.6 Profi-Read-Multi .. 97
4.5.7 Profi-Write-Data .. 100
4.5.8 Profi-Read-Data .. 102
4.5.9 Profi-Get-Cntrl-Info.. 104
4.5.10 Profi-Set-Timeout .. 105
4.5.11 Profi-Get-Timeout.. 107
4.5.12 Profi-Set-Queue-Size .. 108
4.5.13 Profi-Get-Queue-Size.. 109
4.5.14 Profi-Get-Overrun-Count... 110

4.6 INTERFACE RETURN VALUES.. 111

User Interface

User Manual Page: 1

1 SCOPE

This manual describes the common access functions to all components of Softing's PROFIBUS protocol
software .

PROFIBUS API

FMB
LLI

remote
FM7local

FM7

FDLIF

FDL

FMS

FAL

FM2

DP /
DP/V1

Depending on the component of the PROFIBUS protocol to be used, this document should be read in
conjunction with one or more of the following parts of the PROFIBUS User Manual:

• "Basic Management"

• "FMS Services"

• "FM7 Services"

• "DP Services"

• "DP/V1 Services"

• "DP-Slave Services"

• "FDL Services"

 PROFIBUS Application Program Interface

Page: 2 PROFIBUS

2 OVERVIEW

The services the PROFIBUS protocol (FMS, FM7 and DP / DP/V1) offers to the user are described in detail
in EN 50170/2.

Those references describe the functions and parameters of the management and communication services,
but do not provide instructions or structures for the programmer on the nuts and bolts of how to write an
interface. This leaves room for implementations which can be adapted to optimally fit their respective system
environment on the positive side, but which can also reduce the "openness" of the application layer
interfaces.

Softing´s PROFIBUS Application Program Interface (PAPI) provides two mechanisms for data exchange
between application and protocol software and host and controller:

- a send/receive interface using request blocks for service-oriented data exchange and

- a data interface, which is used for fast cycle data exchange.

User Interface

User Manual Page: 3

3 USER INTERFACE USING WINDOWS ME / 9X

3.1 INITIALIZATION AND SHUT DOWN

The initialization functions profi_init and profi_set_default are used to initialize the PROFIBUS Application
Program Interface and to open the host driver.

3.1.1 Profi-Init and Profi-Set-Default

The profi_init or profi_set_default function is used to initialize the WIN32 PROFIBUS-API. The function
has to be called before any other function of PROFIBUS-API is called.

INT16 profi_init
 (
 IN USIGN8 Board,
 IN UNSIGN32 ReadTimeout,
 IN UNSIGN32 WriteTimeout
);

INT16 profi_set_default
 (
 IN USIGN8 Board,
 IN USIGN8 Channel,
 IN UNSIGN32 ReadTimeout,
 IN UNSIGN32 WriteTimeout
);

Function parameter description:

Board: Number betwwen 0..9 of the board to work on
Channel: PROFIBUS channel number (not supported).
ReadTimeout: ReceiveTimeout in msec (not supported).
WriteTimeout: Send Timeout in msec (not supported).

Possible function return values(defined in the header file PB_ERR.H):
- E_OK (0) Interface is initialized
- E_IF_INIT_INVALID_PARAMETER (8) Invalid initialize parameter
- E_IF_NO_CNTRL_RES (10) Controller does not respond
- E_IF_INVALID_CNTRL_TYPE_VERSION (11) Invalid controller type or software version
- E_IF_NO_CNTRL_PRESENT (28) No controller present
- E_IF_INIT_FAILED (31) Initialization failed
 Get detail information with profi_get_last_error
 function

 PROFIBUS Application Program Interface

Page: 4 PROFIBUS

3.1.2 Profi-End

The profi_end function is used to shut down the PROFIBUS API and the corresponding PROFIBUS
interface.

INT16 profi_end
 (
 VOID
);

Possible function return values:

- E_OK (0) Shutdown executed successfully
- E_IF_EXIT_FAILED (32) shutdown executed not successfull,
 Get detail information with profi_get_last_error
 function

User Interface

User Manual Page: 5

3.2 SEND / RECEIVE INTERFACE

The send/receive interface provides by means for both control flow and data flow between host and
controller.

Data flow between the application and the communication is described by a service invariant and a large
number of service specific data structures.

Control flow is directed by means of two functions, which control the data flow in both directions.

As in all communication protocols based on the OSI model, PROFIBUS distinguishes four
application/communication interactions. These four basic interaction types are also called service primitives:

Request: PROFIBUS station A's application initiates a PROFIBUS service and passes the relevant
parameters and data to the communication software.

Indication: The data passed by the request over the network have arrived at PROFIBUS station B
(station A's communication partner for this service) and are passed to station B's
application.

Response: For confirmed PROFIBUS services, station B's application must respond to the indication.
Some services. eg. FMS-READ and GET-OD,. need additional response data.

Confirmation: For confirmed PROFIBUS services, station B's response is shared with station A's
application by means of the "confirmation" service primitive.

There are then two service primitives, then namely request and response, by which an active (i.e. currently
running) application starts up or responds to PROFIBUS services. The direction of control flow and data flow
is from the application to the communication program.

In the case of the two other service primitives, indication and confirmation, data flow goes from
communication to application. Control flow in this case depends on the communication/application
synchronization mechanism.

The two cases described above are covered by two interface functions in the Softing PROFIBUS
implementations.

The profi_snd_req_res function is used for sending requests and responses. The profi_rcv_con_ind
function is used to poll for confirmations and indications.

 PROFIBUS Application Program Interface

Page: 6 PROFIBUS

3.2.1 PROFIBUS Service Description Block

For passing service data through the send/receive interface a service-independent SERVICE-
DESCRIPTION-BLOCK and a service-specific DATA BLOCK.

The data structure T_PROFI_SERVICE_DESCR describes the service to be performed by the protocol
software.

Description of the service description block:

typedef struct T_PROFI_SERVICE_DESCR
 {
 USIGN16 comm_ref;
 USIGN8 layer;
 USIGN8 service;
 USIGN8 primitive;
 INT8 invoke_id;
 INT16 result;
 } T_PROFI_SERVICE_DESCR;

The service description block's elements are as follows:

- comm_ref : Communication reference ("logical channel")

- layer: Layer instance the service invocation is directed to (FMS, FMB, FM7, DP, DPS, FDLIF,
User)

- service_id : Service to be performed in the instance specified in the layer.

- primitive : Service primitives (request, indication, response, confirmation)

- invoke_id : ID to distinguish parallel service invocations

- result : Positive or negative result

The data block contains the service-specific data. Typically, for communication services these are data as
described in the PROFIBUS EN 50170/2

Construction of the service-specific data blocks is described in the manuals FMS, FMB, FM7, FDLIF, DP,
DPS and DP/V1.

User Interface

User Manual Page: 7

3.2.2 Profi-Snd-Req-Res

The profi_snd_req_res function is used to send a Service-Request or a Service-Response to the
PROFIBUS interface.

INT16 profi_snd_req_res
 (
 IN T_PROFI_SERVICE_DESCR FAR* pSdb,
 IN VOID FAR* pData,
 IN PB_BOOL Dummy
);

Function parameter description:

pSdb: Pointer to the data structure of type T_PROFI_SERVICE_DESCR
pData: Pointer to service specific parameters and data
Dummy: Dummy parameter

Possible function return values(defined in the header file PB_ERR.H):

- E_OK (0) Function executed correctly
- E_IF_NO_CNTRL_RES (10) Controller does not respond (CMI_TIMEOUT)
- E_IF_INVALID_LAYER (12) Invalid layer
- E_IF_INVALID_SERVICE (13) Invalid service identifier
- E_IF_INVALID_PRIMITIVE (14) Invalid service primitive
- E_IF_INVALID_DATA_SIZE (15) Not enough CMI data block memory
- E_IF_RESOURCE_UNAVAILABLE (21) No resource available
- E_IF_NO_PARALLEL_SERVICES (22) No parallel services allowed
- E_IF_SERVICE_CONSTR_CONFLICT (23) Service temporarily not executable
- E_IF_SERVICE_NOT_SUPPORTED (24) Service not supported in subset
- E_IF_SERVICE_NOT_EXECUTABLE (25) Service not executable
- E_IF_INVALID_PARAMETER (30) Invalid parameter in REQ or RES
- E_IF_PAPI_NOT_INITIALIZED (33) API not initialized

 PROFIBUS Application Program Interface

Page: 8 PROFIBUS

3.2.3 Profi-Rcv-Con-Ind

The profi_rcv_con_ind function is used to receive a Service-Indication or a Service-Confirmation from the
PROFIBUS interface

INT16 profi_rcv_con_ind
 (
 IN T_PROFI_SERVICE_DESCR FAR* pSdb,
 IN VOID FAR* pData,
 INOUT USIGN16 FAR* pDataLength
);

Function parameter description:

pSdb: Buffer for service description block
pData: Buffer for service specific data block
pDataLength: On function invocation: maximal size of data block
 On function return: actual size of service specific data block

The function returns CON_IND_RECEIVED to signal that a confirmation or indication is available.

Possible function return values (defined in the header file PB_ERR.H):

- NO_CON_IND_RECEIVED (0) There is no confirmation or indication
- CON_IND_RECEIVED (1) Confirmation or indication is available

- E_IF_FATAL_ERROR (7) Unrecoverable error on PROFIBUS controller,
 Error information stored in the data interface
 (see chapter 3.5)
- E_IF_INVALID_DATA_SIZE (15) Size of data block provided not sufficient
- E_IF_PAPI_NOT_INITIALIZED (33) API not initialized

User Interface

User Manual Page: 9

3.3 DATA INTERFACE

In addition to the send / receive interface, the PROFIBUS Application Layer Interface offers a data interface
which consists of data structures shared by host and controller. This data interface allows fast cyclic data
transfer.

The data interface is performed by functions, which provide the data flow from and to the DPRAM area.

 PROFIBUS Application Program Interface

Page: 10 PROFIBUS

3.3.1 Profi-Set-Data

Using the profi_set_data function, shared data located in the DPRAM area can be written or modified.

INT16 profi_set_data
 (
 IN USIGN8 DataId,
 IN USIGN16 Offset,
 IN USIGN16 DataSize,
 IN VOID FAR* pData,
);

Function parameter description:

DataId: Identifier of the specified data structure in the Data Interface
Offset: Offset within the data structure
DataSize: Number of bytes to be written to the DPRAM
pData: Data block to be written

Possible values of data_id (defined in the header file PB_IF.H):

ID_DP_SLAVE_IO_IMAGE 0x80 Identifier of image for slave I/O data (DP)
ID_DP_STATUS_IMAGE 0x81 Identifier of image for status data (DP)

The structures of the data blocks are described in the service specific parts of the PROFIBUS User Manual.

Possible function return values(defined in the header file PB_ERR.H):

- E_OK (00) Function executed correctly
- E_IF_INVALID_DATA_SIZE (15) Not enough CMI data block memory
- E_IF_SERVICE_CONSTR_CONFLICT (23) Service currently not executable, access
 semaphore has been locked by the controller
- E_IF_SERVICE_NOT_SUPPORTED (24) Identifier is not supported
- E_IF_PAPI_NOT_INITIALIZED (33) API not initialized

User Interface

User Manual Page: 11

3.3.2 Profi-Get-Data

The profi_get_data function is used to read shared data located in the DPRAM area.

INT16 profi_get_data
 (
 IN USIGN8 DataId,
 IN USIGN16 Offset,
 INOUT USIGN16 FAR* pDataSize,
 OUT VOID FAR* pData,
);

Function parameter description:

DataId: Identifier of the specified data structure in the Data Interface
Offset: Offset within the data structure
pDataSize: On function invocation: maximal size of the data buffer (pData)
 On function return: number of bytes actually read
pData: Pointer to data buffer

Possible values of data_id (defined in the header file PB_IF.H):

ID_DP_SLAVE_IO_IMAGE 0x80 Identifier of image for slave I/O data (DP)
ID_DP_STATUS_IMAGE 0x81 Identifier of image for status data (DP)
ID_EXCEPTION_IMAGE 0xF0 Identifier of image for exception data (IF)
ID_FW_VERS_IMAGE 0xF1 Identifer of image for firmware version (IF)
ID_SERIAL_DEVICE_NUMBER 0xF2 Identifier of image for serial device number (IF)

The structures of the data blocks are described in the service specific parts (IF, DP) of the manual.

Possible function return values(defined in the header file PB_ERR.H):

- E_OK (00) Function executed correctly
- E_IF_INVALID_DATA_SIZE (15) Size of data block provided not sufficient
- E_IF_SERVICE_CONSTR_CONFLICT (23) Service currently not executable, access
 semaphore has been locked by the controller
- E_IF_SERVICE_NOT_SUPPORTED (24) Identifier is not supported
- E_IF_PAPI_NOT_INITIALIZED (33) API not initialized

 PROFIBUS Application Program Interface

Page: 12 PROFIBUS

3.3.3 Profi-Set-Dps-Input-Data

The profi_set_dps_input_data function writes the input data of the DP slave to the DP-Slave input data
device. It always writes the full length of the data.

INT16 profi_set_dps_input_data
(
IN USIGN8* pData,
IN USIGN8 DataLength,
OUT USIGN8* pState
);

Function parameter description:

pData: Pointer to a USIGN8 variable containing the input data
DataLength: Number of input data to be written (in bytes). If the number does not correspond with

the configured length of the input data, the error message
‘E_IF_INVALID_DATA_SIZE’ is returned.

pState: Pointer to the current input data status bit field with:
- DPS_INPUT_STATE_FREEZE_ENABLED

The slave has enabled the function for freezing the inputs.
- DPS_INPUT_STATE_FREEZE_COMMAND

A corresponding Global_Control command was received. Since the last time
the function profi_set_dps_input_data was called the input data have been
taken over as the data to be transmitted from the slave to the master.A
corresponding Global_Control command for picking up the input data was
received from the master. After the execution of this function the bit is reset
automatically.

Possible function return values(defined in the header file PB_ERR.H):

- E_OK (00) Function executed correctly
- E_IF_INVALID_DATA_SIZE (15) Too much user data
- E_IF_PAPI_NOT_INITIALIZED (33) API not initialized
- E_IF_OS_ERROR (255) OS system error

User Interface

User Manual Page: 13

3.3.4 Profi-Get-Dps-Input-Data

The profi_get_dps_input_data function reads the currently set inputs and the associated status of the DP
slave from the DP-Slave input data device.

INT16 profi_get_dps_input_data

(
OUT USIGN8* pData,
INOUT USIGN8* pDataLength,
OUT USIGN8* pState
);

Function parameter description:

pData: Pointer to a USIGN8 variable array to read the inputs of the slave.
pDataLength: (IN) Pointer to a USIGN8 variable indicating the buffer size in bytes

(OUT) Number of input data read
pState: Pointer to the current input data status bit field with:
 - DPS_INPUT_STATE_FREEZE_ENABLED
 The slave has enabled the function for freezing the inputs.

- DPS_INPUT_STATE_FREEZE_COMMAND
Since the last 'profi_set_dps_input_data' a corresponding Global_Control
command has been received. The status is read-only. The bit will only be
reset with the function profi_set_dps_input_data.

Possible function return values(defined in the header file PB_ERR.H):

- E_OK (00) Function executed correctly
- E_IF_INVALID_DATA_SIZE (15) User buffer to small
- E_IF_PAPI_NOT_INITIALIZED (33) API not initialized
- E_IF_OS_ERROR (255) OS system error

 PROFIBUS Application Program Interface

Page: 14 PROFIBUS

3.3.5 Profi-Get-Dps-Output-Data

The profi_get_dps_output_data function reads the current outputs of the DP slave from the DP-Slave
output data device.

INT16 profi_get_dps_output_data

(
OUT USIGN8* pData,
INOUT USIGN8* pDataLength,
OUT USIGN8* pState
);

Function parameter description:

pData: Pointer to a USIGN8 variable array to read the outputs of the slave.
pDataLength: (IN) Pointer to a USIGN8 variable indicating the buffer size in bytes
 (OUT) Number of output data read
pState: Pointer to the current output data status bit field with:
- - DPS_OUTPUT_STATE_SYNC_ENABLED
 The function for freezing the outputs has been enabled.

- DPS_OUTPUT_STATE_SYNC_COMMAND
A corresponding Global_Control command was received. Since the last time
the function profi_get_dps_output_data was called, a Sync command has
been received upon which received upon which new output data have been
made ready. The bit is cleared automatically after access.

- DPS_OUTPUT_STATE_CLEAR_DATA
The outputs are in failsafe state. A corresponding command was received
from the master.

- DPS_OUTPUT_STATE_VALID_DATA
No transmission errors have occurred during data transmission from the
master and user data are exchanged (no timeout or watchdog error).

- DPS_OUTPUT_STATE_NEW_DATA
New output data were received from the master. Since the last access via
profi_get_dps_output_data function new data have been delivered
(independent of the Sync command). With this bit you can prevent reusing
old data. The bit is cleared after access.

- DPS_OUTPUT_STATE_GLOBAL_CONTROL
Since the last time the output data were read, a Global_Control command
has been received. The bit is cleared as soon as the output data have been
read.

Possible function return values(defined in the header file PB_ERR.H):

- E_OK (00) Function executed correctly
- E_IF_INVALID_DATA_SIZE (15) User buffer to small
- E_IF_PAPI_NOT_INITIALIZED (33) API not initialized
- E_IF_OS_ERROR (255) OS system error

User Interface

User Manual Page: 15

3.4 ADDITIONAL INTERFACE FUNCTIONS

3.4.1 Profi-Ack-Irq

The profi_ack_irq function is used to acknowledge an interrupt received from the PROFIBUS interface and
to return the type of interrupt (only 16-Bit PROFIBUS API).

USIGN8 profi_ack_irq
 (
 VOID
);

Possible function return values (defined in the header file PB_IF.H):

- REQ_IRQ (0xF0) IND/CON interrupt is received
- ACK_IRQ (0x00) ACK interrupt of REQ/RES is received
- DP_SLAVE_IO_REQ_IRQ (0xE0) DP-SLAVE-IO IND/REQ IRQ is received
- DP_SLAVE_IO_ACK_IRQ (0x0E) DP-SLAVE-IO acknowldege IND/REQ IRQ is
 received
- DP_DATA_STOP_REQ_IRQ (0xD0) DP data transfer stop REQ IRQ is received
- DP_DATA_STOP_ACK_IRQ (0x0D) Data transfer stop Acknowldege IRQ is received
- EXCEPTION_REQ_IRQ (0xB0) Exception REQ IRQ is received

 PROFIBUS Application Program Interface

Page: 16 PROFIBUS

3.4.2 Profi-Get-Versions

The profi_get_versions function is used to read the version strings of the PROFIBUS API and PROFIBUS
firmware.

extern INT16 profi_get_versions
 (
 OUT CSTRING FAR* pPapiVersion,
 OUT CSTRING FAR* pFirmwareVersion
)

Function parameter description:

pPapiVersion: Buffer to receive the PAPI version string
pFirmwareVersion: Buffer to receive the firmware version string

NOTE: The buffers have to be provided with a buffer size of VERSION_STRING_LENGTH (defined in the

header file PB_CONF.H) by the user.

Possible function return values (defined in the header file PB_ERR.H):

- E_OK (00) Function executed correctly
- E_IF_NO_CNTRL_RES (10) Controller does not respond (CMI_TIMEOUT)

User Interface

User Manual Page: 17

3.4.3 Profi-Get-Serial-Device-Number

The profi_get_serial_device_number function is used to read the serial device number of the PROFIBUS
controller.

INT16 profi_get_serial_device_number
 (
 OUT USIGN32 FAR* pSerialDeviceNumber
);

Function parameter description:

pSerialDeviceNumber: Serial device number

Possible function return values (defined in the header file PB_ERR.H):

- E_OK (00) Function executed correctly
- E_IF_NO_CNTRL_RES (10) Controller does not respond (CMI_TIMEOUT)
- E_IF_PAPI_NOT_INITIALIZED (33) API not initialized

 PROFIBUS Application Program Interface

Page: 18 PROFIBUS

3.4.4 Profi-GetLast-Error

The profi_get_last_error function is used to return an additional error code for the interface errors
E_IF_NO_CNTRL_PRESENT, E_IF_INIT_FAILED and E_IF_EXIT_FAILED.

INT16 profi_get_last_error
 (
 VOID
);

Possible function return values (defined in the header file PB_ERR.H):

- E_NO_ADD_DETAIL (0x00) No additional error code
- E_PBDRV_XXX (> 0x00) Additional error code

User Interface

User Manual Page: 19

3.5 INTERFACE RETURN VALUES

This chapter gives an overview of the user interface return values. All possible return values are described in
the header files PB_IF.H and PB_ERR.H.

Overview of User Interface error codes and return values

Identifier Value Description

- E_OK 0 No error occured

- NO_CON_IND_RECEIVED 0 No confirmation or indication available

- CON_IND_RECEIVED 1 Confirmation or indication ws received

- E_IF_FATAL_ERROR 7 Unrecoverable error on board 1)

- E_IF_INIT_INVALID_PARAMETER 8 Invalid initialization parameter

- E_IF_NO_CNTRL_RES 10 Controller does not respond

- E_IF_INVALID_CNTRL_TYPE_VERSION 11 Invalid controller type or invalid firmware version

- E_IF_INVALID_LAYER 12 Invalid layer

- E_IF_INVALID_SERVICE 13 Invalid service identifier

- E_IF_INVALID_PRIMITIVE 14 Invalid service primitive

- E_IF_INVALID_DATA_SIZE 15 Not enough CMI data block memory

- E_IF_INVALID_CMI_CALL 19 Invalid CMI call

- E_IF_CMI_ERROR 20 Error occured in CMI

- E_IF_RESOURCE_UNAVAILABLE 21 No resource available

- E_IF_NO_PARALLEL_SERVICES 22 No parallel services allowed

- E_IF_SERVICE_CONSTR_CONFLICT 23 Service temporarily not executable

- E_IF_SERVICE_NOT_SUPPORTED 24 Service not supported

- E_IF_SERVICE_NOT_EXECUTABLE 25 Service not executable

- E_IF_INVALID_ACCESS 26 Invalid access to protocol software

- E_IF_NO_CNTRL_PRESENT 28 No controller present

- E_IF_INVALID_PARAMETER 30 Invalid parameter in REQ or RES

- E_IF_INIT_FAILED 31 Init. API or Controller failed

- E_IF_EXIT_FAILED 32 Exit API or Controller failed

- E_IF_PAPI_NOT_INITIALIZED 33 API not initialized

 PROFIBUS Application Program Interface

Page: 20 PROFIBUS

1) NOTE: If the interface error E_IF_FATAL_ERROR is indicated, the User can read additional
 information about this error via the service interface function profi_rcv_con_ind or data
 interface function profi_get_data:

 Read additional error information via profi_rcv_con_ind:

 Service-Description-Block for Indication:

 USIGN16 comm_ref 0

 USIGN8 layer FMB_USR

 USIGN8 service FMB_EXCEPTION

 USIGN8 primitive IND

 INT8 invoke_id 0

 INT16 result POS

 Data block for Indication:

 Data structure T_EXCEPTION

 USIGN8 task_id Task in wich the fatal system error is occurred

 USIGN8 par1 Exception parameter 1

 USIGN16 par2 Exception parameter 2

 USIGN16 par3 Exception parameter 3

 Read additional error information via profi_get_data:

 profi_get_data (ID_EXCEPTION_IMAGE, /* Identifier of the exception description */
 0, /* Offset in the exception description */
 (USIGN16 FAR*) &data_len, /* Size of the exception description */
 (T_EXCEPTION FAR*) &exception /* Pointer to the exception description */
);

 T_EXCEPTION exception; /* Defined in the header file PB_ERR.H */
 USIGN16 data_descr_len = sizeof(T_EXCEPTION);

User Interface

User Manual Page: 21

4 USER INTERFACE USING WINDOWS XP, WINDOWS 2000 OR WINDOWS NT

The PROFIBUS driver for Windows XP, Windows 2000 and Windows NT offers access to the functionality of
the PROFIBUS protocol stack which runs on the PC boards PROFIboard (ISA, PCI), PROFIcard /
PROFIcard 2 and PROFI104 and on the PROFIBUS-Ethernet gateway PROFIgate / FG-300.

The software consists of the following parts:

 A low-level kernel device driver which provides hardware access to PROFIboard (ISA, PCI),

PROFIcard and PROFI104 and remote access via Ethernet to PROFIgate / FG-300.

 An intermediate kernel device driver which supports access to PROFIBUS in a protocol-specific
 manner. The following devices exist: FDL SAP devices, DP Slave devices and FMS CR devices.

 An interface library (PAPI - PROFIBUS Application Program Interface) which provides access to the

complete functionality of the drivers, and, in addition, offers a compatibility mode interface to simplify
porting of existing PROFIBUS applications to Windows XP, Windows 2000 or Windows NT.

The software is designed to access up to ten PROFIBUS boards.

Application

PROFIBUS protocol driver

NT System service interface

PAPI

Enhanced modeCompatiblity mode

PROFIBUS hardware driver

 PROFIBUS Application Program Interface

Page: 22 PROFIBUS

4.1 LOGICAL DEVICES

The kernel device drivers create basic logical devices during system startup and additional logical devices
by special system calls. Low-level devices are provided to access the functionality of the low-level device
driver, and high-level devices (management devices, FMS CR devices, FDL SAP devices, DP service
devices and DP-Master data devices) are provided to access the functionality of the protocol device driver.

All Low-level devices and all management devices will be created when the device drivers are started. All
the devices (e.g. FMS\CrZ, FDL\SapZ, DP\ServiceZ, DP\SlaveDataZ, DP\MSACZ where Z is an enumerated
number) will be created by requests of the application program.

The logical devices are accessed by the I/O functions of Windows 2000 or Windows NT. Each logical device
must be opened before it can be used. The devices are accessed by read, write, and control functions. After
using a device, it should always be closed.

All read requests can be executed only if the device is open for read access. All write requests can be
executed only if the device is open for write access. The access rights needed for control functions depend
on the specific control function code.

4.1.1 Directory structure of logical devices

To access a logical device, a unique Win32 device name is required. Optionally a Win32 alias device name
can be defined via the PROFIBUS control panel. The device names are created by the kernel device drivers.

Note: The Win32 subsystem of Windows XP, Windows 2000 or Windows NT requires that all device names
begin with the characters "\\.\".

The logical devices are structured hierarchically similar to a directory structure:

Example to access the general service device of board 0:
- Access via Win32 device name: \\.\PROFIBUS\Board0\Pb0\Service
- Access via Win32 alias device name: \\.\PROFIBUS\Node0\Service

Win32 device name Win32 alias device name

User Interface

User Manual Page: 23

NOTES:

In C programs, each backslash must be typed as "\\". Consequently, this device name in a C program
is "\\\\.\\PROFIBUS\\Board0\\Pb0\\Service " or "\\\\.\\PROFIBUS\\Node0\\Service".

The device names of all devices described below use these variables:

Y is the board number, 0..9
Z is an index, defining the special communication reference, DP slave or service access point

4.1.2 Low-level devices

4.1.2.1 Board device

Win32 Name: \\.\PROFIBUS\BoardY\Board
Win32 Alias Name: \\.\PROFIBUS\<SymbolicNodeName>\Board

Function: Services concerning the complete board

Read: Read the version information of the PROFIBUS protocol firmware
Ioctl: IOCTL_PROFI_GET_DATA_IMAGE

 Get a data image from the board

4.1.2.2 General service device

Win32 Name: \\.\PROFIBUS\BoardY\Pb0\Service
Win32 Alias Name: \\.\PROFIBUS\<SymbolicNodeName>\Service

Function: Read and write any PROFIBUS frame

Read: Read any received frame
Write: Write any frame
Ioctl: IOCTL_PROFI_SET_TIMEOUT

 IOCTL_PROFI_GET_TIMEOUT
 Set or read the time-outs for read/write operations to/from this device.
 'Set' requires read access to the device.

 'Get' can be done with any access to the device
 The default time-out values of the General Service Device are 0 ms for read and

write.

If writing of a frame fails with one of these error codes (E_IF_NO_PARALLEL_SERVICES,
E_IF_RESOURCE_UNAVAILABLE, E_IF_SERVICE_CONSTR_CONFLICT), the hardware driver retries to
write the frame until either the write succeeds or the write time-out elapsed.

NOTE:

The FMB_EXCEPTION indication will be generated by the firmware if a fatal error has been detected.
The PROFIBUS hardware will be reinitialized.

If a FMB_RESET or FMB_EXIT confirmation has been received, the PROFIBUS hardware will be
reinitialized.

 PROFIBUS Application Program Interface

Page: 24 PROFIBUS

4.1.2.3 General DP-Master data device

Win32 Name: \\.\PROFIBUS\BoardY\Pb0\DpData
Win32 Alias Name: \\.\PROFIBUS\<SymbolicNodeName>\DpData

Function: Read and write of any DP data

Read: Read any DP data, not restricted to a slave
Write: Write any DP data, not restricted to a slave
Ioctl: Set / Clear DP data bits in I/O data image, not restricted to a slave

4.1.2.4 General DP-Slave input data device

Win32 Name: \\.\PROFIBUS\BoardY\Pb0\DpSlaveInputData
Win32 Alias Name: \\.\PROFIBUS\<SymbolicNodeName>\DpSlaveInputData

Function: Read and write of any DP-Slave input data

Read: Read DP-Slave input data and current status
Ioctl: Write DP-Slave input data, read current status

4.1.2.5 General DP-Slave output data device

Win32 Name: \\.\PROFIBUS\BoardY\Pb0\DpSlaveOutputData
Win32 Alias Name: \\.\PROFIBUS\<SymbolicNodeName>\DpSlaveOutputData

Function Read DP-Slave output data

Read: Read DP-Slave output data and current status

4.1.3 Management devices

All management devices support the IoControl IOCTL_PROFI_READ_MULTI to check more than one
device for received frames.

User Interface

User Manual Page: 25

4.1.3.1 Basic management device

Win32 Name: \\.\PROFIBUS\BoardY\Pb0\Management
Win32 Alias Name: \\.\PROFIBUS\<SymbolicNodeName>\Management

Function: Basic Management functionality

Read: Read FMB confirmations and indications
Write: Write FMB requests and responses
Ioctl: IOCTL_PROFI_CREATE_FMS_MANAGEMENT

 IOCTL_PROFI_CREATE_FMS_CR
 IOCTL_PROFI_CREATE_FDL_MANAGEMENT
 IOCTL_PROFI_CREATE_FDL_SAP
 IOCTL_PROFI_CREATE_DP_MANAGEMENT
 IOCTL_PROFI_CREATE_DP_MSAC
 IOCTL_PROFI_CREATE_DP_SLAVE_DATA
 IOCTL_PROFI_CREATE_DP_SERVICE
 Create logical devices for selected SAPs, CRs, DP-Slaves
 Possible with any access to the device

Ioctl: IOCTL_PROFI_SET_QUEUE_SIZE

 IOCTL_PROFI_GET_QUEUE_SIZE
 Set the maximum number of frames to buffer in the device driver
 Possible with any access to the device

Ioctl: IOCTL_PROFI_GET_OVERRUN_COUNT

 Read and reset the overrun count
 Possible with any access to the device

Ioctl: IOCTL_PROFI_SET_TIMEOUT

 IOCTL_PROFI_GET_TIMEOUT
 Set and read the time-outs for read from and write to all service-oriented, high-level
 devices of the selected PROFIBUS channel.
 'Set' requires read access to the device

 'Get' can be done with any access to the device
 The default time-out values of the high-level service-oriented devices are 30 ms for

 write and 7 seconds for read.

PROFIBUS services supported on this device:

FMB_SET_CONFIGURATION FMB_LSAP_STATUS
FMB_SET_BUSPARAMETER FMB_GET_LIVE_LIST
FMB_READ_BUSPARAMETER FMB_FM2_EVENT
FMB_SET_VALUE FMB_EXIT
FMB_READ_VALUE FMB_EXCEPTION

NOTE:

FMB_SET_CONFIGURATION must be the first service executed by the master application.

 PROFIBUS Application Program Interface

Page: 26 PROFIBUS

4.1.3.2 DP management device

Win32 Name: \\.\PROFIBUS\BoardY\Pb0\DP\Management
Win32 Alias Name: \\.\PROFIBUS\<SymbolicNodeName>\DP\Management

Function: PROFIBUS DP management

Read: Read DP management frames
Write: Write DP management frames
Ioctl: IOCTL_PROFI_CREATE_DP_MSAC

IOCTL_PROFI_CREATE_DP_SLAVE_DATA
IOCTL_PROFI_CREATE_DP_SERVICE
Create logical device for selected DP-Slave
Possible with any access to the device

All DP Indications are received on this device.

PROFIBUS services supported on this device:

DP_DOWNLOAD_LOC DP_GET_CFG
DP_UPLOAD_LOC DP_SLAVE_DIAG
DP_START_SEQ_LOC DP_RD_INP
DP_END_SEQ_LOC DP_RD_OUTP
DP_GET_SLAVE_DIAG DP_SET_SLAVE_ADD
DP_SET_PRM_LOC DP_DOWNLOAD
DP_GET_MASTER_DIAG_LOC DP_UPLOAD
DP_GET_SLAVE_PARAM DP_START_SEQ
DP_INIT_MASTER DP_END_SEQ
DP_ACT_PARAM_LOC DP_ACT_PARAM
DP_DATA_TRANSFER DP_GET_MASTER_DIAG
DP_EXIT_MASTER DP_GLOBAL_CONTROL

Services not supported:
DP_SET_PRM DP_DATA_EXCHANGE
DP_CHK_CF

User Interface

User Manual Page: 27

4.1.3.3 FMS management device

Win32 Name: \\.\PROFIBUS\BoardY\Pb0\FMS\Management
Win32 Alias Name: \\.\PROFIBUS\<SymbolicNodeName>\FMS\Management

Function: PROFIBUS FMS management

Read: Read FMS management frames
Write: Write FMS management frames
Ioctl: IOCTL_PROFI_CREATE_FMS_CR

Create logical device for selected CR
Possible with any access to the device

PROFIBUS services supported on this device:

FMS_OD_READ_LOC
FMS_INIT_LOAD_OD_LOC
FMS_LOAD_OD_LOC
FMS_TERM_LOAD_OD_LOC
FMS_CREATE_VFD_LOC
FMS_VFD_SET_PHYS_STATUS_LOC
FMS_PI_SET_STATE_LOC
FM7_READ_CRL_LOC
FM7_INIT_LOAD_CRL_LOC

FM7_LOAD_CRL_LOC
FM7_TERM_LOAD_CRL_LOC
FM7_SET_VALUE_LOC
FM7_READ_VALUE_LOC
FM7_LSAP_STATUS_LOC
FM7_IDENT_LOC
FM7_EVENT
FM7_EXIT

Services not supported:

FM7_RESET
FM7_SET_BUSPARAMETER
FM7_READ_BUSPARAMETER
FM7_GET_LIVE_LIST

 PROFIBUS Application Program Interface

Page: 28 PROFIBUS

4.1.3.4 FDL management device

Win32 Name: \\.\PROFIBUS\BoardY\Pb0\FDL\Management
Win32 Alias Name: \\.\PROFIBUS\<SymbolicNodeName>\FDL\Management

Function: PROFIBUS FDL management:

Read: Read FDL management frames
Write: Write FDL management frames
Ioctl: IOCTL_PROFI_CREATE_FDL_SAP

Create logical device for selected SAP
Possible with any access to the device

PROFIBUS service supported on this device:

FDLIF_EXIT

Services not supported:

FDLIF_SET_BUSPARAMETER
FDLIF_READ_BUSPARAMETER
FDLIF_EVENT

4.1.4 Data-oriented high-level devices

4.1.4.1 DP slave data device

Win32 Name: \\.\PROFIBUS\BoardY\Pb0\DP\SlaveDataZ
Win32 Alias Name: \\.\PROFIBUS\<SymbolicNodeName>\DP\SlaveDataZ

Function Read and write PROFIBUS DP data

Open: The device can be opened only if the slave is available through the PROFIBUS

network.
Read: Read the DP Data of slave Z

If the DP protocol is in the state STOP or the state flag of the slave is not zero, the
last valid data is read, and the error code (E_IF_INVALID_DP_STATE or
E_IF_SLAVE_ERROR) will be returned.

Write: Write the DP data of slave Z

If the DP protocol is in the state STOP or the state flag of the slave is not zero, the
data is copied to a buffer, and the (E_IF_INVALID_DP_STATE or
E_IF_SLAVE_ERROR) error code will be returned.

User Interface

User Manual Page: 29

4.1.5 Service-oriented high-level devices

All service-oriented high-level devices support the IoControl IOCTL_PROFI_READ_MULTI to check more
than one device if frames have been received.

4.1.5.1 DP service device

Win32 Name: \\.\PROFIBUS\BoardY\Pb0\DP\ServiceZ
Win32 Alias Name: \\.\PROFIBUS\<SymbolicNodeName>\DP\ServiceZ

Function Slave specific DP services

Read: Read slave-specific DP frames
Write: Write slave-specific DP frames

PROFIBUS services supported on this device:

DP_GET_CFG
DP_SLAVE_DIAG
DP_RD_INP
DP_RD_OUTP
DP_GLOBAL_CONTROL

Services not supported:

DP_SET_PRM
DP_CHK_CFG
DP_DATA_EXCHANGE

4.1.5.2 DP master slave acyclic device (DP/V1 device)

Win32 Name: \\.\PROFIBUS\BoardY\Pb0\DP\MSACZ
Win32 Alias Name: \\.\PROFIBUS\<SymbolicNodeName>\DP\MSACZ

Function: PROFIBUS DP/V1 Services

Read: Read a frame from slave Z
Write: Write a frame to slave Z
Close: A DP_ABORT request will be sent automatically to close the Communications

Reference (CR). This is an unconfirmed service.

 PROFIBUS Application Program Interface

Page: 30 PROFIBUS

PROFIBUS services supported on this device:

DP_INITIATE
DP_READ
DP_WRITE
DP_ABORT

The maximum amount of opened MSAC devices is currently limited to 30. A Communication Reference (CR)
need not be specified in the service descriptor block. The protocol driver handles the CRs used for MSAC
devices.

4.1.5.3 FDL SAP device

Win32 Name: \\.\PROFIBUS\BoardY\Pb0\\FDL\SapZ
Win32 Alias Name: \\.\PROFIBUS\<SymbolicNodeName>\FDL\SapZ

Function: PROFIBUS FDL services

Read: Read a frame from SAP Z
Write: Write a frame to SAP Z
Close: A FDLIF_SAP_DEACTIVATE request will be sent by the driver automatically to

deactivate the SAP. This is a confirmed service.

PROFIBUS services supported on this device:

FDLIF_SDA
FDLIF_SDN
FDLIF_SRD
FDLIF_REPLY_UPDATE
FDLIF_REPLY_UPDATE_MULTIPLE
FDLIF_SAP_ACTIVATE
FDLIF_RSAP_ACTIVATE
FDLIF_SAP_CHANGE_ACCESS
FDLIF_SAP_DEACTIVATE

Any indication received at a SAP device which is not open for read access will be ignored.

User Interface

User Manual Page: 31

4.1.5.4 FMS Communication Reference (CR) device

Win32 Name: \\.\PROFIBUS\BoardY\Pb0\FMS\CrZ
Win32 Alias Name: \\.\PROFIBUS\<SymbolicNodeName>\FMS\CrZ

Function: PROFIBUS FMS services

Read: Read a frame from CR Z
Write: Write a frame to CR Z
Close: A FMS_ABORT request with code USER_DISCONNECT will be sent automatically

to close the Communication Reference (CR). This is an unconfirmed service.

NOTE:
Remote management indications are received at CR1.

PROFIBUS services supported on this device:

FMS_INITIATE
FMS_STATUS
FMS_IDENTIFY
FMS_READ
FMS_WRITE
FMS_GET_OD
FMS_READ_WITH_TYPE
FMS_WRITE_WITH_TYPE
FMS_DEF_VAR_LIST
FMS_DEL_VAR_LIST
FMS_INIT_DOWNL_SEQ
FMS_DOWNL_SEG
FMS_TERM_DOWNL_SEQ
FMS_INIT_UPL_SEQ
FMS_UPL_SEG
FMS_TERM_UPL_SEQ
FMS_REQ_DOM_DOWNL
FMS_REQ_DOM_UPL
FMS_PI_CREATE
FMS_PI_DELETE
FMS_PI_START
FMS_PI_STOP
FMS_PI_RESUME
FMS_PI_RESET
FMS_PI_KILL
FMS_ALT_EVN_CND_MNT
FMS_ACK_EVN_NOTIFY
FMS_PHYS_READ
FMS_PHYS_WRITE
FMS_INIT_PUT_OD
FMS_PUT_OD
FMS_TERM_PUT_OD

FMS_INFO_RPT
FMS_UNSOLICITEDSTATUS
FMS_EVN_NOTIFY
FMS_INFO_RPT_WITH_TYPE
FMS_EVN_NOTIFY_WITH_TYPE
FMS_ABORT
FMS_REJECT

FMS_OD_READ_LOC
FMS_INIT_LOAD_OD_LOC
FMS_LOAD_OD_LOC
FMS_TERM_LOAD_OD_LOC
FMS_CREATE_VFD_LOC
FMS_VFD_SET_PHYS_STATUS_LOC
FMS_PI_SET_STATE_LOC
FMS_VAR_DATA_EVENT_LOC

FMS_GEN_INIT_DOWNL_SEQ
FMS_GEN_DOWNL_SEG
FMS_GEN_TERM_DOWNL_SEQ

FM7_INITIATE
FM7_ABORT
FM7_READ_CRL_REM
FM7_INIT_LOAD_CRL_REM
FM7_LOAD_CRL_REM
FM7_TERM_LOAD_CRL_REM
FM7_SET_VALUE_REM
FM7_READ_VALUE_REM
FM7_LSAP_STATUS_REM
FM7_IDENT_REM

NOTE:

 PROFIBUS Application Program Interface

Page: 32 PROFIBUS

If an FMS_INITIATE request is received at a CR which is not opened for read access, the driver will
automatically send a response with code E_FMS_INIT_USER_DENIED.

All other indications at a CR which is not opened for read access will be ignored.

4.1.6 Access rights

All management devices can be opened only once for read access and only once for write access.

The DP master slave acyclic devices may be opened several times for one slave with any access.

All other service-oriented devices (General Service Device, FMS CR Devices, FDL SAP Devices, DP
Service Devices) may be opened any times for write access, but only once for read access.

All data-oriented devices (General Data Device, DP Slave Data Devices) may opened any times for read
access, but only once for write access.

All management devices and all service-oriented high-level devices use the General Service Device to
communicate with the board. The data-oriented high-level devices (DP Slave Data Devices) additionally use
the General Data Device. Therefore, the low-level devices can be used only if no management device or
high-level device is open.

The board device may be opened any times for read access (to read the firmware version information), but
only once for write access. It may be opened for write access only if there is no other device open on this
board.

User Interface

User Manual Page: 33

4.2 PROGRAM INTERFACES

The PROFIBUS driver for Windows 2000 and Windows NT supports three different program interfaces.
Each of these interfaces has its own advantages (+) and disadvantages (-). The following list should help
you decide which interface to use.

• WIN32 System Interface

The Win32 system interface consists of the standard Win32 system calls for device handling. These
functions can be used to access the devices provided by the low-level and the protocol kernel mode
device drivers.

+ Provides the whole functionality of the device drivers

+ Asynchronous read or write calls possible

− Most difficult to program

• PROFIBUS Application Program Interface

The PROFIBUS API provides the same set of functions as the PROFIBUS API for Windows ME,
Windows 9x, Windows 3.x or MS-DOS. This interface does not use the functionality provided by the
protocol device driver. All PROFIBUS API calls are implemented based on the functionality provided by
the low-level device driver.

+ Same functions as in older PROFIBUS software. Use this interface if you want to port an existing
application.

− One process can handle only one board.

− No functionality of the protocol driver

• PROFIBUS Enhanced Application Program Interface

The enhanced PROFIBUS API contains new functions in the PAPI which use the functionality of the
protocol device driver.

+ Encapsulates the whole functionality of the protocol device driver

+ Provides additional functionality (frame size calculation)

 PROFIBUS Application Program Interface

Page: 34 PROFIBUS

4.2.1 Data structures

All program interfaces provide access to the service-oriented devices. A PROFIBUS frame consists of a
service-independent description and a service-specific service-specific data block with parameters and data.

The data structure T_PROFI_SERVICE_DESCR describes the service to be performed by the protocol
software.

Description of the service description block:

typedef struct T_PROFI_SERVICE_DESCR
 {
 USIGN16 comm_ref;
 USIGN8 layer;
 USIGN8 service;
 USIGN8 primitive;
 INT8 invoke_id;
 INT16 result;
 } T_PROFI_SERVICE_DESCR;

The service description block's elements are as follows:

- comm_ref : Communication reference ("logical channel")
- layer: Layer instance the service invocation is directed to (FMS, FMB, FM7, DP, DPS, FDLIF,

FMS_USR, FMB_USR, FM7_USR, DP_USR, DPS_USR, FDLIF_USR)

- service_id : Service to be performed in the instance specified in the layer.

- primitive : Service primitives (request, indication, response, confirmation)

- invoke_id : ID to distinguish parallel service invocations

- result : Positive or negative result

The data block contains the service-specific data. Typically, for communication services these are data as
described in the PROFIBUS EN 50170/2

Construction of the service-specific data blocks is described in the manuals FMS, FMB, FM7, FDLIF, DP
and DP/V1.

User Interface

User Manual Page: 35

4.3 PROFIBUS WIN32 SYSTEM INTERFACE

The following Win32 system calls can be used to handle the PROFIBUS devices. These calls are
subsequently described in detail:

CreateFile Open a PROFIBUS device

CloseHandle Close a PROFIBUS device

GetLastError Get the error code of the last failed system call

DeviceIOControl Send a control code to a PROFIBUS device

ReadFile Read data from a PROFIBUS device

ReadFileEx Read data asynchronously from a PROFIBUS device

WriteFile Write data to a PROFIBUS device

WriteFileEx Write data asynchronously to a PROFIBUS device

SetFilePointer Set the file pointer of a general data device

FileIOCompletionRoutine Callback routine for asynchronous data transfer

 PROFIBUS Application Program Interface

Page: 36 PROFIBUS

4.3.1 CreateFile

The CreateFile function opens a PROFIBUS device and returns a handle that can be used to access the
object.

HANDLE CreateFile
(
LPCTSTR lpFileName,
DWORD dwDesiredAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpSecurityAttributes
DWORD dwCreationDistribution,
DWORD dwFlagsAndAttributes,
HANDLE hTemplateFile
);

Function parameter description:

lpFileName: Points to a null-terminated string that specifies the name of the PROFIBUS device to

open.
dwDesiredAccess: Specifies the type of access to the device. An application can obtain read access,

write access or read-write access. Use the following flag constants to build a value
for this parameter. Both GENERIC_READ and GENERIC_WRITE must be set to
obtain read/write access. If dwDesiredAccess is 0, neither read nor write access is
allowed; only IOControl operations that do not need a specific access right can be
performed on the device.
Value Meaning
GENERIC_READ Specifies read access to the device. Data can be read from

the device, and the file pointer can be moved.
GENERIC_WRITE Specifies write access to the device. Data can be written to

the device, and the file pointer can be moved.
dwShareMode: Set of bit flags that specifies how the device can be shared. If dwShareMode is 0,

the device cannot be shared. No other open operations can be performed on the
device. This flag cannot extend the constraints described in chapter 4.1.6 (Access
rights).To share the device, use a combination of one or more of the following
values:
Value Meaning
FILE_SHARE_READ Other open operations can be performed on the device for

read access.
FILE_SHARE_WRITE Other open operations can be performed on the device for

write access.

User Interface

User Manual Page: 37

lpSecurityAttributes: Always should be NULL; security is not supported by the PROFIBUS device drivers.
dwCreationDistribution: Must be OPEN_EXISTING.
dwFlagsAndAttributes: Specifies the file attributes and flags for the file.

Attribute Meaning
FILE_ATTRIBUTE_NORMAL The file has no other attributes set. This attribute is

valid only if used alone.
FILE_FLAG_OVERLAPPED Instructs the operating system to initialize the device

so ReadFile and WriteFile operations that take a
significant amount of time to process return
ERROR_IO_PENDING. When the operation is
finished, an event is set to the signaled state.
When you specify FILE_FLAG_OVERLAPPED, the
ReadFile and WriteFile functions must specify an
OVERLAPPED structure: i.e. when
FILE_FLAG_OVERLAPPED is specified, an
application must perform overlapped reading and
writing.
General Data Device: When
FILE_FLAG_OVERLAPPED is specified, the file
position must be passed as part of the lpOverlapped
parameter (pointing to an OVERLAPPED structure)
to the ReadFile and WriteFile functions.
This flag also enables more than one operation to
be performed simultaneously with the handle (a
simultaneous read and write operation, for
example).

hTemplateFile: This value must be NULL.

Possible function return values

- If the function succeeds, the return value is an open handle to the specified device.
- If the function fails, the return value is INVALID_HANDLE_VALUE. To obtain extended error information,

call GetLastError.

NOTES:

You can use the CreateFile function to open a logical PROFIBUS device. The function returns a
handle to the device. This handle can be used with the ReadFile, WriteFile, and DeviceIOControl
function.

The CloseHandle function is used to close a handle returned by CreateFile.

 PROFIBUS Application Program Interface

Page: 38 PROFIBUS

Example

#include <windows.h>

...

{

 HANDLE hBoard;

 ULONG ErrorCode;

 hBoard = CreateFile ("\\\\.\\PROFIBUS\\Board0\\Board" // Name of the device

 GENERIC_READ, // Access mode

 FILE_SHARE_READ // Share mode

 NULL, // Pointer to securitydescriptor

 OPEN_EXISTING, // How to create

 FILE_ATTRIBUTE_NORMAL, // File attribute

 NULL, // Handle to template file

);

 if (hBoard == INVALID_HANDLE_VALUE)

 {

 // do error handling

 ErrorCode = GetLastError();

 ...

 }

 ...

}

User Interface

User Manual Page: 39

4.3.2 CloseHandle

The CloseHandle function closes an open handle.

BOOL CloseHandle

(
HANDLE hObject
);

Function parameter description:

hObject: Identifies an open device handle.

Possible function return values

- If the function succeeds, the return value is TRUE.-
- If the function fails, the return value is FALSE. To obtain extended error information, call GetLastError.

NOTES:

CloseHandle invalidates the specified object.

Use CloseHandle to close handles returned by calls to the CreateFile function.

Closing an invalid handle raises an exception. This includes closing a handle twice and not checking
the return value and closing an invalid handle.

 PROFIBUS Application Program Interface

Page: 40 PROFIBUS

Example

{

 HANDLE hDevice;

 // Open device

 ULONG ErrorCode;

 hDevice = CreateFile (....

 // do input / output

 ...

 // close device

 if (!CloseHandle (hDevice))

 {

 // do error handling

 ErrorCode = GetLastError();

 ...

 }

}

User Interface

User Manual Page: 41

4.3.3 GetLastError

The GetLastError function returns the calling thread's last-error code value. The last-error code is
maintained on a per-thread basis. Multiple threads do not overwrite each other's last-error code.

DWORD GetLastError

(
VOID
);

Function parameter description:

This function has no parameters.

Possible function return values

The return value is the calling thread's last-error code value.

NOTES:

You should call the GetLastError function immediately when a return value of a function indicates
that such a call will return useful data. Reason: Some functions call SetLastError(0) when they
succeed, wiping out the error code set by the most recently failed function.

Most functions in the Win32 API that set the thread's last error code value set it when they fail; a few
functions set it when they succeed. Function failure is typically indicated by a return value error
code such as FALSE, NULL, 0xFFFFFFFF, or −1. Some functions call SetLastError under conditions
of success; these cases are noted in the reference page of each function.

The PROFIBUS driver functions only set the last error code when they fail.

Error codes are 32-bit values (bit 31 is the most significant bit). Bit 29 is called the "Customer code
flag" and is reserved for application-defined error codes; no system error code has this bit set. This
bit set to one indicates that the error code is defined by the PROFIBUS software. The lower two
bytes include the PROFIBUS error code.

To obtain an error string for operating system error codes, use the FormatMessage function. A
complete list of system error codes can be found in the WINERROR.H header file in the Win32 SDK.
The list of application-defined error codes can be found in this manual.

 PROFIBUS Application Program Interface

Page: 42 PROFIBUS

Example

 #include <windows.h>

 #include "pb_err.h"

 #define CUSTOMER_CODE_FLAG 0x20000000

 ...

 {

 ULONG ErrorCode;

 // do PROFIBUS IO

 ...

 // get last error

 ErrorCode = GetLastError ();

 // check for Customer code flag

 if (ErrorCode & CUSTOMER_CODE_FLAG)

 {

 // Customer code flag is set: do profibus error handling

 // profibus error code is the low word of ErrorCode

 switch (LOWORD(ErrorCode))

 {

 case E_IF_FATAL_ERROR:

 ...

 break;

 case E_IF_SERVICE_CONSTRAINT_CONFLICT:

 ...

 break;

 ...

 }

 }

 else // System error

 {

 ...

 }

}

User Interface

User Manual Page: 43

4.3.4 DeviceIoControl

The DeviceIoControl function sends a control code directly to a specified device driver, causing the
corresponding logical device to perform the specified operation.

BOOL DeviceIoControl

(
HANDLE hDevice,
DWORD dwIoControlCode,
LPVOID lpInBuffer,
DWORD nInBufferSize,
LPVOID lpOutBuffer,
DWORD nOutBufferSize,
LPDWORD lpBytesReturned,
LPOVERLAPPED lpOverlapped
);

Function parameter description:

hDevice: Handle to the device that is to perform the operation. Call the CreateFile function to

obtain a device handle.
dwIoControlCode: Specifies the control code for the operation. This value identifies the specific

operation to be performed and the type of device on which the operation is to be
performed. The values defined are described later in this section.

lpInBuffer: Pointer to a buffer that contains the data required to perform the operation. This
parameter can be NULL if the dwIoControlCode parameter specifies an operation
that does not require input data.

nInBufferSize: Specifies the size, in bytes, of the buffer pointed to by lpInBuffer.
lpOutBuffer: Pointer to a buffer that receives the operation's output data. This parameter can be

NULL if the dwIoControlCode parameter specifies an operation that does not
produce output data.

nOutBufferSize: Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer.
lpBytesReturned: Pointer to a variable that receives the size, in bytes, of the data stored into the buffer

pointed to by lpOutBuffer. lpBytesReturned cannot be NULL. Even when an
operation does not produce output data, and lpOutBuffer can be NULL, the
DeviceIoControl function makes use of the variable pointed to by lpBytesReturned.
After such an operation, the value of the variable is inapplicable.

lpOverlapped: Pointer to an OVERLAPPED structure.
If hDevice was opened with the FILE_FLAG_OVERLAPPED flag, this parameter
must point to a valid OVERLAPPED structure. In this case, DeviceIoControl is
performed as an overlapped (asynchronous) operation. If the device was opened
with FILE_FLAG_OVERLAPPED and lpOverlapped is NULL, the function fails in
unpredictable ways.
If hDevice was opened without specifying the FILE_FLAG_OVERLAPPED flag, this
parameter is ignored, and the DeviceIoControl function does not return until the
operation has been completed or an error occurs.

 PROFIBUS Application Program Interface

Page: 44 PROFIBUS

Possible function return values

- If the function succeeds, the return value is TRUE.-
- If the function fails, the return value is FALSE. To obtain extended error information, call GetLastError.

NOTES:

If hDevice was opened with FILE_FLAG_OVERLAPPED and the lpOverlapped parameter points to an
OVERLAPPED structure, DeviceIoControl is performed as an overlapped (asynchronous) operation.
In this case, the OVERLAPPED structure must contain a handle to a manual-reset event object
created by a call to the CreateEvent function.

If the overlapped operation cannot be completed immediately, the function returns FALSE, and
GetLastError returns ERROR_IO_PENDING, indicating that the operation is executing in the
background. When this happens, the operating system sets the event object in the OVERLAPPED
structure to the non-signaled state before DeviceIoControl returns. The system then sets the event
object to the signaled state when the operation has been completed. The calling thread can use any
of the wait functions to wait for the event object to be signaled, and then use the
GetOverlappedResult function to determine the results of the operation. The GetOverlappedResult
function reports the success or failure of the operation and the number of bytes returned in the
lpOutBuffer buffer.

Control codes

The following control codes are supported by the PROFIBUS device drivers and defined in the file
"pb_ntdrv.h":

Value Meaning
IOCTL_PROFI_SET_TIMEOUT Set time-out values for read and write

lpInBuffer: Pointer to a PROFI_TIMEOUT data
nInBufferSize: Size of PROFI_TIMEOUT data
lpOutBuffer: NULL
nOutBufferSize: 0

Devices: General service device if the low-level
 devices are used:
 Basic management device if the manage-
 ment or service-oriented high-level Devices
 are used

Required Access: Read

User Interface

User Manual Page: 45

IOCTL_PROFI_GET_TIMEOUT Read time-out values for read and write

lpInBuffer: NULL
nInBufferSize: 0
lpOutBuffer Pointer to PROFI_TIMEOUT data
nOutBufferSize Size of PROFI_TIMEOUT data

Devices: General service device if the low-
 level devices are used Basic
 management device, if the manage
 ment or service-oriented high-level
 devices are used

Required Access: None

IOCTL_PROFI_SET_QUEUE_SIZE Set the maximum number of frames to be buffered in high-

level service-oriented devices

lpInBuffer: Pointer to integer of type ULONG
nInBufferSize: Size of ULONG
lpOutBuffer NULL
nOutBufferSize 0

Devices: Basic management device

Required Access: None

IOCTL_PROFI_GET_QUEUE_SIZE Read the maximum number of frames to be buffered in high-

level service-oriented devices. The default queue size is 32.

lpInBuffer: NULL
nInBufferSize: 0
lpOutBuffer Pointer to integer of type ULONG
nOutBufferSize Size of ULONG

Devices: Basic management device

Required Access: None

IOCTL_PROFI_GET_OVERRUN_COUNT Read and reset the overrun count which counts the total

number of dismissed frames received from the firmware.

lpInBuffer: NULL
nInBufferSize: 0
lpOutBuffer Pointer to integer of type ULONG
nOutBufferSize size of ULONG

Devices: Basic management device

Required Access: None

 PROFIBUS Application Program Interface

Page: 46 PROFIBUS

IOCTL_PROFI_CREATE_DP_MANAGEMENT
IOCTL_PROFI_CREATE_FMS_MANAGEMENT
IOCTL_PROFI_CREATE_FDL_MANAGEMENT
IOCTL_PROFI_CREATE_DP_SERVICE
IOCTL_PROFI_CREATE_DP_SLAVE_DATA
IOCTL_PROFI_CREATE_DP_MSAC
IOCTL_PROFI_CREATE_FMS_CR
IOCTL_PROFI_CREATE_FDL_SAP To minimize the number of existing logical devices to the needs of

your application, many logical devices are created on request. In
addition, the IoControl functions return the device name of the
newly created (or already existing) logical device.
The management devices are created by default at system startup
time. The control codes are included for completeness and for
retrieving the names of the logical devices

lpInBuffer: Pointer to integer type of ULONG
 Contains the index of the device to create
 (CR, DP slave address, SAP)
nInBufferSize: size of ULONG
lpOutBuffer: Pointer to an array of characters
 Contains the name of the created device
 after successful completion
nOutBufferSize: Size of array of characters

Devices: Basic management device
 DP management device
 (IOCTL_PROFI_CREATE_DP)
 FMS management device
 (IOCTL_PROFI_CREATE_FMS_CR)
 FDL management device
 (IOCTL_PROFI_CREATE_FDL_SAP)

Required Access: None

User Interface

User Manual Page: 47

IOCTL_PROFI_READ_MULTI Read the first frame received on multiple devices.

lpInBuffer: Pointer to an array of handles of the devices
 to listen for a frame
nInBufferSize: Size of the handle array in bytes
lpOutBuffer: Pointer to the buffer that receives the frame
 data
nOutBufferSize: Size of the frame buffer
 The maximum frame size is defined in
 MAX_FMS_PDU_LENGTH
lpBytesReturned: Size of the received frame. If the size of the
 frame is 0, no frame was received during
 the time-out time.

Devices: All management and frame-oriented high-
 level devices

Required Access: None
 All devices of the handle array must be
 opened with read access.

IOCTL_PROFI_GET_DATA_IMAGE Read a data image from the controller.

lpInBuffer: Pointer to PROFI_DATA_IMAGE_DESCR
 data
nInBufferSize: Size of the PROFI_DATA_IMAGE_DESCR
 data
lpOutBuffer: Buffer to receive the data image
nOutBufferSize: Size of the data image buffer
lpBytesReturned: Size of the read date image

Devices: General board device

Required Access: None

IOCTL_PROFI_SET_DPS_DATA Write DP-Slave input data and read DP-Slave input data state.

lpInBuffer: DP-Slave input data
nInBufferSize: Size of the DP-Slave input data
lpOutBuffer: Buffer to receive the input data state
nOutBufferSize: sizeof(USIGN8)
lpBytesReturned: Size of the read data

Devices: DP-Slave input data device

Required Access: None

 PROFIBUS Application Program Interface

Page: 48 PROFIBUS

IOCTL_PROFI_SET_DP_BITS Set Bits in DP slave I/O data image.

lpInBuffer: Pointer to PROFI_DP_BIT_ACCESS data
nInBufferSize: Size of PROFI_DP_BIT_ACCESS data
lpOutBuffer: NULL
nOutBufferSize: 0
lpBytesReturned: Pointer to variable to receive output byte
 count, always zero

Devices: General DP-Master data device

Required Access: None

IOCTL_PROFI_CLEAR_DP_BITS Clear Bits in DP slave I/O data image.

lpInBuffer: Pointer to PROFI_DP_BIT_ACCESS data
nInBufferSize: Size of PROFI_DP_BIT_ACCESS data
lpOutBuffer: NULL
nOutBufferSize: 0
lpBytesReturned: Pointer to variable to receive output byte
 count, always zero

Devices: General DP-Master data device

Required Access: None

User Interface

User Manual Page: 49

Example

{

 HANDLE hBasicMgmt;

 HANDLE hCR[5];

 ULONG cr, Bytes;

 char deviceName[100];

 BYTE dataRead[MAX_FMS_PDU_LENGTH];

 // Open basic management device

 hBasicMgmt = CreateFile ("\\\\.\\PROFIBUS\\Board0\\Pb0\\Management",

 GENERIC_READ,0,NULL,OPEN_EXISTING,

 FILE_ATTRIBUTE_NORMAL,NULL);

 if (hBasicMgmt != INVALID_HANDLE_VALUE)

 {

 for (cr = 0; cr < 5; cr++)

 {

 // create the FMS CR device

 if (DeviceIoControl(hBasicMgmt,(ULONG)IOCTL_PROFI_CREATE_FMS_CR,&cr,

 sizeof(ULONG),deviceName,100,&nBytes,NULL))

 {

 // open the FMS CR device

 hCR[cr] = CreateFile (deviceName,GENERIC_READ | GENERIC_WRITE,0,NULL,

 OPEN_EXISTING,FILE_ATTRIBUTE_NORMAL,NULL);

 if (hCR[cr] == INVALID_HANDLE_VALUE)

 {

 // do error handling - open of device failed

 }

 {

 else

 {

 ... // do error handling - creation of device failed

 }

 }

 // all CR devices open

 ...

 // read on all CR devices

 if(DeviceIoControl(hCR,(ULONG)IOCTL_PROFI_READ_MULTI,(LPVOID)hCR,

 5 * sizeof(HANDLE), dataRead, MAX_FMS_PDU_LENGTH,

 &nBytes,NULL))

 {

 if (nBytes > 0)

 // Frame received

 else

 // No frame received during time-out

 ...

 }

 }

...

}

 PROFIBUS Application Program Interface

Page: 50 PROFIBUS

4.3.5 ReadFile

The ReadFile function reads data from a device. See the description of each logical device for a description
of the data to read. File positions are considered only during read operations from the general data devices.

BOOL ReadFile

(
HANDLE hFile,
LPVOID lpBuffer,
DWORD nNumberOfBytesToRead,
LPDWORD lpNumberOfBytesRead,
LPOVERLAPPED lpOverlapped
);

Function parameter description:

hFile: Identifies the file to be read. The file handle must have been created with

GENERIC_READ access to the file. For asynchronous read operations,
hFile can be any handle opened with the FILE_FLAG_OVERLAPPED flag
by the CreateFile function.

lpBuffer: Points to the buffer that receives the data read from the device.
nNumberOfBytesToRead: Specifies the maximum number of bytes to be read from the device.
lpNumberOfBytesRead: Points to the number of bytes read.

If lpOverlapped is NULL, lpNumberOfBytesRead cannot be NULL.
If lpOverlapped is not NULL, lpNumberOfBytesRead can be NULL. If this is
an overlapped read operation, the number of bytes read can be fetched by
calling GetOverlappedResult.

lpOverlapped: Points to an OVERLAPPED structure. This structure is required if hFile was
created with FILE_FLAG_OVERLAPPED.
If hFile was opened with FILE_FLAG_OVERLAPPED, the lpOverlapped
parameter must not be NULL. It must point to a valid OVERLAPPED
structure. If hFile was created with FILE_FLAG_OVERLAPPED and
lpOverlapped is NULL, the function can incorrectly report that the read
operation is complete.
If hFile was opened with FILE_FLAG_OVERLAPPED and lpOverlapped is
not NULL, the read operation starts at the offset specified in the
OVERLAPPED structure and ReadFile may return before the read
operation has been completed. In this case, ReadFile returns FALSE, and
the GetLastError function returns ERROR_IO_PENDING. This allows the
calling process to continue while the read operation finishes. The event
specified in the OVERLAPPED structure is set to the signaled state upon
completion of the read operation.
If hFile was not opened with FILE_FLAG_OVERLAPPED and lpOverlapped
is NULL, the read operation starts at the current file position, and ReadFile
does not return until the operation has been completed.
If hFile is not opened with FILE_FLAG_OVERLAPPED and lpOverlapped is
not NULL, the read operation starts at the offset specified in the
OVERLAPPED structure. ReadFile does not return until the read operation
has been completed.

Possible function return values:

User Interface

User Manual Page: 51

- If the function succeeds, the return value is TRUE. If the return value is TRUE and the number of bytes

read is zero, no data are available at the device.
- If the function fails, the return value is FALSE. To obtain extended error information, call GetLastError.

NOTES:

Applications must neither read from nor write to the input buffer that a read operation is using until
the read operation completes. A premature access to the input buffer may lead to corruption of the
data read into that buffer.

The ReadFile function may fail and return ERROR_INVALID_USER_BUFFER or
ERROR_NOT_ENOUGH_MEMORY whenever there are too many outstanding asynchronous I/O
requests.

If you read from the general service device, the comm_ref field of the service descriptor block
contains a number of status bits in the high byte. Only the low byte contains the communication
reference of the service.

Usage
Board device: Reads the version information of the PROFIBUS protocol firmware

lpBuffer: pointer to an array of characters
nNumberOfBytesToRead: the maximum size of the version

information is defined in
VERSION_STRING_LENGTH

Service-oriented devices: Reads a received frame. The frame consists of the service description
followed by the service and primitive specific data.

lpBuffer: pointer to the buffer that receives the frame
data

nNumberOfBytesToRead: size of the buffer pointed by lpBuffer. A
frame could have the maximum size
defined in MAX_FMS_PDU_LENGTH

lpNumberOfBytesRead: size of the received frame. If the size of the
frame is 0 and the function succeeded, no
frame was received during the time-out
time.

Data-oriented devices: Reads DP data. The DP slave data devices check the status information of

the slave an return the error E_SLAVE_ERROR if the slave status is bad.

lpBuffer: Pointer to the buffer that receives the DP
data

nNumberOfBytesToRead Size of the buffer. The maximum amount of
bytes to read on DP slave data devices is
the maximum read size of the slave.

 PROFIBUS Application Program Interface

Page: 52 PROFIBUS

Examples

{

 HANDLE hBoard; // Handle of the board device

 HANDLE hService; // Handle of the general service device

 char firmwareVersion[VERSION_STRING_LENGTH];

 // Open board and service device

 ...

 // Read the firmware version info from the board device

 if(ReadFile(hBoard,dataVersion,VERSION_STRING_LENGTH,&nBytes,NULL))

 {

 // read version info

 ...

 }

 // Read from the service device

 if(ReadFile(hService,dataService,MAX_FMS_PDU_LENGTH,&nBytes,NULL))

 {

 if (nBytes > 0)

 // Frame received

 else

 // No frame received during time-out

 ...

 }

}

{

 HANDLE hSlave3; // Handle of the DP slave data device of the slave 3

 BYTE dataService[MAX_FMS_PDU_LENGTH];

 // Create and open the DP slave data device

 ...

 // Read form the DP slave data device of the slave 3

 if(ReadFile(hSlave3,(LPVOID)&dataSlave3,sizeof(dataSlave3),&nBytes,NULL))

 {

 // read DP data

 ...

 }

}

User Interface

User Manual Page: 53

4.3.6 ReadFileEx

The ReadFileEx function reads data from a file asynchronously. It is designed solely for asynchronous
operation, unlike the ReadFile function, which is designed for both synchronous and asynchronous
operation. ReadFileEx lets an application perform other processing during a file read operation.
The ReadFileEx function reports its completion status asynchronously, calling a specified completion routine
when reading is completed and the calling thread is in an alertable wait state.

BOOL ReadFileEx

(
HANDLE hFile,
LPVOID lpBuffer,
DWORD nNumberOfBytesToRead,
LPOVERLAPPED lpOverlapped,
LPOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine
);

Function parameter description:

hFile: An open handle that specifies the device to be read from. This file handle

must have been created with the FILE_FLAG_OVERLAPPED flag and must
have GENERIC_READ access to the file.

lpBuffer: Points to a buffer that receives the data read from the file.
This buffer must remain valid for the duration of the read operation. The
application should not use this buffer until the read operation is completed.

nNumberOfBytesToRead: Specifies the maximum number of bytes to be read from the file. If
nNumberOfBytesToRead is zero, this function does nothing.

lpOverlapped: Points to an OVERLAPPED data structure that supplies data to be used
during the asynchronous (overlapped) file read operation.
If the device specified by hFile supports the concept of byte offsets (these are
the general data devices, e.g. "\\PROFIBUS\Board0\DpData") , the caller of
ReadFileEx must specify a byte offset at which reading should begin. The
caller specifies the byte offset by setting the OVERLAPPED structure's Offset
member; the OffsetHigh member must be set to 0.
If the file entity specified by hFile does not support the concept of byte, the
caller must set the Offset and OffsetHigh members to zero, or ReadFileEx
fails.
The ReadFileEx function ignores the OVERLAPPED structure's hEvent
member. An application is free to use that member for its own purposes in the
context of a ReadFileEx call. ReadFileEx signals completion of its read
operation by calling, or queuing a call to, the completion routine pointed to by
lpCompletionRoutine, so it does not need an event handle.
The ReadFileEx function does use the OVERLAPPED structure's Internal
and InternalHigh members. An application should not set these members.
The OVERLAPPED data structure pointed to by lpOverlapped must remain
valid for the duration of the read operation. It should not be a variable that can
go out of scope while the file read operation is in progress.

lpCompletionRoutine: Points to the completion routine to be called when the read operation is
complete and the calling thread is in an alertable wait state. For more
information about the completion routine, see FileIOCompletionRoutine.

 PROFIBUS Application Program Interface

Page: 54 PROFIBUS

Possible function return values(defined in the header file PB_ERR.H):

- If the function succeeds, the return value is TRUE.
- If the function fails, the return value is FALSE. To obtain extended error information, call GetLastError.

If the function succeeds, the calling thread has an asynchronous I/O operation pending: the overlapped read
operation from the file. When this I/O operation completes and the calling thread is blocked in an alertable
wait state, the system calls the function pointed to by lpCompletionRoutine, and the wait state completes
with a return code of WAIT_IO_COMPLETION.
If the function succeeds and the file reading operation completes but the calling thread is not in an alertable
wait state, the system queues the completion routine call, holding the call until the calling thread enters an
alertable wait state.

NOTES:

Applications must neither read from nor write to the input buffer that a read operation is using until
the read operation completes. A premature access to the input buffer may lead to corruption of the
data read into that buffer.

The ReadFileEx function may fail if there are too many outstanding asynchronous I/O requests. In
the event of such a failure, GetLastError can return ERROR_INVALID_USER_BUFFER or
ERROR_NOT_ENOUGH_MEMORY.

If hFile is a handle to a named pipe or other file entity that does not support the byte-offset concept,
the Offset and OffsetHigh members of the OVERLAPPED structure pointed to by lpOverlapped must
be zero, or ReadFileEx fails.

An application uses the WaitForSingleObjectEx, WaitForMultipleObjectsEx, and SleepEx functions to
enter an alertable wait state.

Usage

There is no sense in using the ReadFileEx function with board or data-oriented devices, because these
system calls are served immediately by the PROFIBUS device drivers. A read operation may become
pending only on the service-oriented devices.

Service-oriented devices: Starts the asynchronous read of a received frame

lpBuffer: Pointer to the buffer that receives
the frame data

nNumberOfBytesToRead: The maximum size of a frame is
defined in
MAX_FMS_PDU_LENGTH.

User Interface

User Manual Page: 55

4.3.7 WriteFile

The WriteFile function writes data to a file and is designed for both synchronous and asynchronous
operation.

BOOL WriteFile

(
HANDLE hFile,
LPCVOID lpBuffer,
DWORD nNumberOfBytesToWrite,
LPDWORD lpNumberOfBytesWritten,
LPOVERLAPPED lpOverlapped
);

Function parameter description:

hFile: Identifies the file to be written to. The file handle must have been created
with GENERIC_WRITE access to the file. For asynchronous write
operations, hFile can be any handle opened with the
FILE_FLAG_OVERLAPPED flag by the CreateFile function.

lpBuffer: Points to the buffer containing the data to be written to the file.
nNnumberOfBytesToWrite: Specifies the number of bytes to write to the file.
lpNumberOfBytesWritten: Points to the number of bytes written by this function call.

If lpOverlapped is NULL, lpNumberOfBytesWritten cannot be NULL.
If lpOverlapped is not NULL, lpNumberOfBytesWritten can be NULL. If this
is an overlapped write operation, the number of bytes written can be fetched
by calling GetOverlappedResult.

lpOverlapped: Points to an OVERLAPPED structure. This structure is required if hFile was
opened with FILE_FLAG_OVERLAPPED.
If hFile was opened with FILE_FLAG_OVERLAPPED, the lpOverlapped
parameter must not be NULL. It must point to a valid OVERLAPPED
structure. If hFile was opened with FILE_FLAG_OVERLAPPED and
lpOverlapped is NULL, the function can incorrectly report that the write
operation is complete.
If hFile was opened with FILE_FLAG_OVERLAPPED and lpOverlapped is
not NULL, the write operation starts at the offset specified in the
OVERLAPPED structure, and WriteFile may return before the write
operation has been completed. In this case, WriteFile returns FALSE, and
the GetLastError function returns ERROR_IO_PENDING. This allows the
calling process to continue processing while the write operation is being
completed. The event specified in the OVERLAPPED structure is set to the
signaled state upon completion of the write operation.
If hFile was not opened with FILE_FLAG_OVERLAPPED and lpOverlapped
is NULL, the write operation starts at the current file position, and WriteFile
does not return until the operation has been completed.
If hFile was not opened with FILE_FLAG_OVERLAPPED and lpOverlapped
is not NULL, the write operation starts at the offset specified in the
OVERLAPPED structure, and WriteFile does not return until the write
operation has been completed.

 PROFIBUS Application Program Interface

Page: 56 PROFIBUS

Possible function return values(defined in the header file PB_ERR.H):

- If the function succeeds, the return value is TRUE.
- If the function fails, the return value is FALSE. To obtain extended error information, call GetLastError.

NOTES:

Applications must neither read from nor write to the output buffer that a write operation is using until
the write operation completes. Premature access of the output buffer may lead to corruption of the
data written from that buffer.

The WriteFile function may fail with ERROR_INVALID_USER_BUFFER or ERROR_NOT_ENOUGH_
MEMORY whenever there are too many outstanding asynchronous I/O requests.

Usage

Service-oriented devices: Send a frame. The frame consists of the service description followed by the

service and primitive-specific data.
lpBuffer: Pointer to the frame to send
nNumberOfBytesToWrite: Size of the frame

The WriteFile function fails with the
PROFIBUS error E_IF_NO_CNTRL_RES if
the time-out for sending of the frame
elapsed.

Data-oriented devices: Writes DP data. The DP slave data devices check the status information of

the slave and return the error E_SLAVE_ERROR if the slave status is bad.
lpBuffer: Pointer to the DP data which should be

written.
nNumberOfBytesToWrite: Size of the DP data to write. The maximum

amount of bytes to write to DP slave data
devices is the maximum write size of the
slave.

User Interface

User Manual Page: 57

Example

{

 HANDLE hService; // Handle of the general service device

 HANDLE hSlave3; // Handle of the DP slave data device of the slave 3

 T_PROFI_SERVICE_DESCR sdb; // Service description

 T_VAR_READ_REQ readReq; // Read request

 BYTE dataService[MAX_FMS_PDU_LENGTH];

 USIGN8 invokeId

 ...

 // Open devices and create the DP slave data device

 ...

 // All devices open with read access

 // Send a FMS_READ request

 // Fill the service description

 sdb.layer = FMS;

 sdb.service = FMS_READ;

 sdb.primitive = REQ;

 sdb.invoke_id = ++invokeId;

 sdb.comm_ref = 5;

 // Fill the read request

 readReq.acc_spec.tag = ACCESS_INDEX;

 readReq.acc_spec.id.index = 20;

 readReq.subindex = 0;

 // Create the frame

 memcpy(dataService,&sdb,sizeof(T_PROFI_SERVICE_DESCR));

 memcpy(dataService + sizeof(T_PROFI_SERVICE_DESCR),&readReq, sizeof(T_VAR_READ_REQ));

 // Send the frame

 if(!WriteFile(hService,dataService,sizeof(T_PROFI_SERVICE_DESCR) +

 sizeof(T_VAR_READ_REQ),&nBytes,NULL))

 {

 // error handling

 ...

 }

 // write data to the DP slave data device of the slave 3

 if(!WriteFile(hSlave3,(LPVOID)&dataSlave3,sizeof(dataSlave3),&nBytes,NULL))

 {

 // error handling

 ...

 }

}

 PROFIBUS Application Program Interface

Page: 58 PROFIBUS

4.3.8 WriteFileEx

The WriteFileEx function writes data to a file. It is designed solely for asynchronous operation, unlike
WriteFile, which is designed for both synchronous and asynchronous operation. WriteFileEx reports its
completion status asynchronously, calling a specified completion routine when writing is completed and the
calling thread is in an alertable wait state.

BOOL WriteFileEx
(
HANDLE hFile,
LPCVOID lpBuffer,
DWORD nNumberOfBytesToWrite,
LPOVERLAPPED lpOverlapped,
LPOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine
);

Function parameter description:

hFile: An open handle that specifies the device to be written to. This file handle
must have been created with the FILE_FLAG_OVERLAPPED flag and with
GENERIC_WRITE access to the file.

lpBuffer: Points to the buffer containing the data to be written to the file.
This buffer must remain valid for the duration of the write operation. The
caller must not use this buffer until the write operation is completed.

nNumberOfBytesToWrite: Specifies the number of bytes to write to the file.
If nNumberOfBtyesToWrite is zero, this function does nothing.

lpOverlapped: Points to an OVERLAPPED data structure that supplies data to be used
during the overlapped (asynchronous) write operation.
For devices that support byte offsets (these are the general data devices,
e.g. "\\PROFIBUS\Board0\Pb0\DpData"), you must specify a byte offset at
which to start writing to the file. Specify this offset by setting the Offset
member of the OVERLAPPED structure and setting OffsetHigh to zero. For
files that do not support byte offsets, set Offset and OffsetHigh to zero, or
WriteFileEx fails.
The WriteFileEx function ignores the OVERLAPPED structure's hEvent
member. An application is free to use that member for its own purposes in
the context of a WriteFileEx call. WriteFileEx signals completion of its
writing operation by calling, or queuing a call to, the completion routine
pointed to by lpCompletionRoutine, so it does not need an event handle.
The WriteFileEx function uses the Internal and InternalHigh members of the
OVERLAPPED structure. Do not change the value of these members.
The OVERLAPPED data structure must remain valid for the duration of the
write operation. It should not be a variable that can go out of scope while the
write operation is pending completion.

lpCompletionRoutine: Points to a completion routine to be called when the write operation has
been completed and the calling thread is in an alertable wait state. For more
information about this completion routine, see FileIOCompletionRoutine.

Possible function return values(defined in the header file PB_ERR.H):

User Interface

User Manual Page: 59

- If the function succeeds, the return value is TRUE.
- If the function fails, the return value is FALSE. To obtain extended error information, call GetLastError.

If the WriteFileEx function succeeds, the calling thread has an asynchronous I/O operation pending: the
overlapped write operation to the device. When this I/O operation finishes and the calling thread is blocked
in an alertable wait state, the operating system calls the function pointed to by lpCompletionRoutine, and the
wait completes with a return code of WAIT_IO_COMPLETION.

If the function succeeds and the file-writing operation finishes but the calling thread is not in an alertable wait
state, the system queues the call to *lpCompletionRoutine, holding the call until the calling thread enters an
alertable wait state.

NOTES:

Applications must neither read from nor write to the output buffer that a write operation is using until
the write operation completes. Premature access of the output buffer may lead to corruption of the
data written from that buffer.

The WriteFileEx function may fail, returning the messages ERROR_INVALID_USER_BUFFER or
ERROR_NOT_ENOUGH_MEMORY if there are too many outstanding asynchronous I/O requests.

An application uses the WaitForSingleObjectEx, WaitForMultipleObjectsEx,
MsgWaitForMultipleObjectsEx, SignalObjectAndWait, and SleepEx functions to enter an alertable
wait state.

Usage

There is no sense in using the WriteFileEx function with board or data-oriented devices, because this
system calls are served immediately by the PROFIBUS device drivers. Only on the service-oriented devices
a write operation may become pending.

Service-oriented devices: Starts the asynchronous send of a frame

lpBuffer. Pointer to the frame to send
nNumberOfBytesToWrite: Size of the frame

 PROFIBUS Application Program Interface

Page: 60 PROFIBUS

4.3.9 GetOverlappedResult

The GetOverlappedResult function returns the results of an overlapped operation on the specified file,
named pipe, or communications device.

BOOL GetOverlappedResult

(
HANDLE hFile,
LPOVERLAPPED lpOverlapped,
LPDWORD lpNumberOfBytesTransferred,
BOOL bWait
);

Function parameter description:

hFile: Identifies the device. This is the same handle that was specified when the

overlapped operation was started by a call to the ReadFile, WriteFile, or
DeviceIoControl function.

lpOverlapped: Points to an OVERLAPPED structure that was specified when the
overlapped operation was started.

lpNumberOfBytesTransferred: This value is undefined. Points to a 32-bit variable that receives the number
of bytes that were actually transferred by a read or write operation.

bWait: Specifies whether the function should wait for the pending overlapped
operation to be completed. If TRUE, the function does not return until the
operation has been completed. If FALSE and the operation is still pending,
the function returns FALSE and the GetLastError function returns
ERROR_IO_INCOMPLETE.

Possible function return values:

- If the function succeeds, the return value is TRUE.
- If the function fails, the return value is FALSE. To obtain extended error information, call GetLastError.

NOTES:

The results reported by the GetOverlappedResult function are those of the specified handle's last
overlapped operation to which the specified OVERLAPPED structure was provided and for which the
operation's results were pending. A pending operation is indicated when the function that started
the operation returns FALSE and the GetLastError function returns ERROR_IO_PENDING. When an
I/O operation is pending, the function that started the operation resets the hEvent member of the
OVERLAPPED structure to the non-signaled state. Then when the pending operation has been
completed, the system sets the event object to the signaled state.

If the bWait parameter is TRUE, GetOverlappedResult determines whether the pending operation has
been completed by waiting for the event object to be in the signaled state.

User Interface

User Manual Page: 61

If the hEvent member of the OVERLAPPED structure is NULL, the system uses the state of the hFile
handle to signal when the operation has been completed. Use of file, named pipe, or
communications-device handles for this purpose is discouraged. It is safer to use an event object
because of the confusion that can occur when multiple simultaneous overlapped operations are
performed on the same file, named pipe, or communications device. In this situation, there is no way
to know which operation caused the object's state to be signaled.

Specify a manual-reset event object in the OVERLAPPED structure. If an auto-reset event object is
used, the event handle must not be specified in any other wait operation in the interval between
starting the overlapped operation and the call to GetOverlappedResult. For example, the event object
is sometimes specified in one of the wait functions to wait for the operation's completion. When the
wait function returns, the system sets an auto-reset event's state to non-signaled, and a subsequent
call to GetOverlappedResult with the bWait parameter set to TRUE causes the function to be blocked
indefinitely.

 PROFIBUS Application Program Interface

Page: 62 PROFIBUS

4.3.10 SetFilePointer

The only type of PROFIBUS devices that support the concept of file pointers is the general data device. The
SetFilePointer function moves the file pointer of an open general data device.

DWORD SetFilePointer

(
HANDLE hFile,
LONG lDistanceToMove,
PLONG lpDistanceToMoveHigh,
DWORD dwMoveMethod
);

Function parameter description:

hFile: Identifies the file whose file pointer is to be moved. The file handle must

have been created with GENERIC_READ or GENERIC_WRITE access to
the file.

IDistanceToMove: Specifies the number of bytes to move the file pointer. A positive value
moves the pointer forward in the file and a negative value moves it
backward.

lpDistanceToMoveHigh: Must be NULL for PROFIBUS devices
dwMoveMethod: Specifies the starting point for the file pointer move. This parameter can be

one of the following values:
Value Meaning
FILE_BEGIN The starting point is zero or the beginning of the file.

If FILE_BEGIN is specified, DistanceToMove is
interpreted as an unsigned location for the new file
pointer.

FILE_CURRENT The current value of the file pointer is the starting
point.

FILE_END Cannot be used for PROFIBUS devices.

Possible function return values:

- If the SetFilePointer function succeeds, the return value is the low-order doubleword of the new file pointer.
- If the function fails, the return value is 0xFFFFFFFF. To obtain extended error information, call

GetLastError.

NOTES:

You should be careful when setting the file pointer in a multithreaded application. For example, an
application whose threads share a file handle, update the file pointer, and read from the file must
protect this sequence by using a critical section object or mutex object.

The PROFIBUS general data device doesn’t change the position of the file pointer with a read or
write operation. The file pointer is only changed with the SetFilePointer function. You do not have to
set the file pointer before every ReadFile or WriteFile call. Once set, the file pointer stays at the
position.

User Interface

User Manual Page: 63

Example

{

 HANDLE hData; // Handle of the general data device

 DWORD filePointer // File pointer

 LONG distance; // Distance to move

 ...

 // Open general data device

 ...

 filePointer = SetFilePointer (hData, distance, NULL, FILE_BEGIN)

 if (filePointer == 0xffffffff)

 {

 // error handling

 ...

 }

 // Continue with read and write to the general data device

 ...

}

 PROFIBUS Application Program Interface

Page: 64 PROFIBUS

4.3.11 FileIOCompletionRoutine

The FileIOCompletionRoutine function is called when an asynchronous I/O function (ReadFileEx or
WriteFileEx) is completed and the calling thread is in an alertable wait (using the SleepEx,
WaitForSingleObjectEx, or WaitForMultipleObjectsEx function with the fAlertable flag set to TRUE).

VOID FileIOCompletionRoutine

(
DWORD dwErrorCode,
DWORD dwNumberOfBytesTransfered,
LPOVERLAPPED lpOverlapped
);

Function parameter description:

dwErrorCode: Specifies the I/O completion status. This parameter may be one of the

following values:
Value Meaning
0 The I/O was successful.
ERROR_HANDLE_EOF The ReadFileEx function tried to read past

the end of the file.
dwNumberOfBytesTransfered: Specifies the number of bytes transferred. If an error occurs, this parameter

is zero.
lpOverlapped: Points to the OVERLAPPED structure specified by the asynchronous I/O

function.
Windows does not use the hEvent member of the OVERLAPPED structure;
the calling application may use this member to pass information to the
completion routine. Windows does not use the OVERLAPPED structure
after the completion routine is called, so the completion routine can de-
allocate the memory used by the overlapped structure.

Possible function return values:

This function does not return a value.

NOTES:

The FileIOCompletionRoutine function is a placeholder for an application-defined or library-defined
function name.

Returning from this function allows another pending I/O completion routine to be called. All waiting
completion routines are called before the alertable thread's wait is satisfied with a return code of
WAIT_IO_COMPLETION. Windows may call the waiting completion routines in any order. They may
or may not be called in the order the I/O functions are completed.

Each time Windows calls a completion routine, it uses some of the application's stack. If the
completion routine does additional asynchronous I/O and alertable waits, the stack may grow.

User Interface

User Manual Page: 65

Usage

FileIOCompletionRoutine for ReadFileEx:

Service-oriented devices: Fetches the result of the asynchronous read of a received frame.

dwNumberOfBytesTransfered: Size of the received frame. If the
size of the frame is 0, no frame was
received during the time-out time

FileIOCompletionRoutine for WriteFileEx:

Service-oriented devices: Fetches the result of the asynchronous write of a sent frame.

dwNumberOfBytesTransfered: Size of the sent frame.

 PROFIBUS Application Program Interface

Page: 66 PROFIBUS

4.4 PROFIBUS APPLICATION PROGRAM INTERFACE

The PROFIBUS Application Program Interface (PAPI) running in the Windows 2000 or Windows NT
environment, provides the same set of functions as the PROFIBUS API running in a Windows ME, Windows
9x, Windows 3.1x or MS-DOS environment.

The PROFIBUS API consists of these functions:

init_profibus Initialize interface (only board 0)

profi_set_default Initialize interface

profi_end Shut down interface

profi_snd_req_res Send frame

profi_rcv_con_ind Receive frame

profi_set_data Write data

profi_get_data Read data

profi_set_dps_input_data Write DP-Slave input data

profi_get_dps_input_data Read DP-Slave input data

profi_get_dps_output_data Read DP-Slave output data

profi_get_versions Read version strings

profi_get_serial_device_number Read serial device number

The service-oriented functions use the general service device of the low-level kernel mode driver and the
data-oriented functions use the general DP-Master data device, DP-Slave input data device or DP-Slave
output data device of the low-level kernel mode driver. The compatibility mode PAPI interface does not use
the functionality provided by the protocol kernel mode driver.

User Interface

User Manual Page: 67

4.4.1 Initialization and Shut down

The initialization functions init_profibus, and profi_set_default are used to initialize the PROFIBUS API
and open the low-level devices of the PROFIBUS hardware driver.

4.4.1.1 Init-Profibus

The init_profibus function is used to initialize the PROFIBUS API and to open the low-level devices of
interface 0 (board 0) of the PROFIBUS hardware driver. The function has to be called before any other
function of PROFIBUS-API is called

INT16 init_profibus

(
IN USIGN32 DprAddress,
IN USIGN16 IOPortAddress,
IN PB_BOOL Dummy
);

Function parameter description:

DprAddress: Parameter is without meaning. The DprAddress is set automatically by the

PROFIBUS hardware driver.
IOPortAddress: Parameter is without meaning. The IOPortAddress is set automatically by

the PROFIBUS hardware driver.
Dummy: Parameter is a dummy parameter.

Possible function return values(defined in the header file PB_ERR.H):

- E_OK (0x00) Interface is initialized
- E_IF_CMI_ERROR (0x14) Can not set timeout values
- E_IF_SERVICE_NOT_EXECUTABLE (0x19) Application has called init_profibus before
- E_IF_READING_REGISTRY (0xF3) Error reading registry
- E_IF_OS_ERROR (0xFF) Can not open low-level device(s)

 PROFIBUS Application Program Interface

Page: 68 PROFIBUS

NOTES:

The init_profibus function initializes only board 0 and only polling mode (timeout = 0) is supported.

Example

...

#include "pb_if.h"

...

{

INT16 rc;

if (E_OK == (rc = init_profibus(0,0,0)))

{

 // Compatibility mode PAPI initialized

 ..

}

}

User Interface

User Manual Page: 69

4.4.1.2 Profi-Set-Default

The profi_set_default function is used to initialize the PROFIBUS API and to open the low-level devices of
the desired interface (board) of the PROFIBUS hardware driver. The function has to be called before any
other function of PROFIBUS-API is called

INT16 profi_set_default

(
IN USIGN8 Board,
IN USIGN8 Channel,
IN USIGN32 ReadTimeout,
IN USIGN32 WriteTimeout
);

Function parameter description:

Board: Number betwwen 0..9 of the board to work on
Channel: PROFIBUS channel number (not supported).
ReadTimeout: ReceiveTimeout in msec (WAIT_FOR_EVER for infiniti wait).
WriteTimeout: Send Timeout in msec (WAIT_FOR_EVER for infiniti wait).

Possible function return values(defined in the header file PB_ERR.H):

- E_OK (0x00) Interface is initialized
- E_IF_CMI_ERROR (0x14) Can not set timeout values
- E_IF_SERVICE_NOT_EXECUTABLE (0x19) Application has called init_profibus before
- E_IF_READING_REGISTRY (0xF3) Error reading registry
- E_IF_OS_ERROR (0xFF) Can not open low-level device(s)

NOTES:

One process ca only use one board. To use more than one board, new process(es) must be started.

Example

#include "pb_if.h"

...

{

 INT16 rc;

 USIGN8 boardNr;

 USIGN32 readTimeout, writeTimeout;

 ...

 if (E_OK == (rc = profi_set_default(boardNr,0,readTimeout,writeTimeout)))

 {

 ... // PAPI is initialized

 }

}

 PROFIBUS Application Program Interface

Page: 70 PROFIBUS

4.4.1.3 Profi-End

The profi_end function is used to shut down the PROFIBUS API. This means that the low-level devices
will be closed.

INT16 profi_end

(
VOID
);

Possible function return values(defined in the header file PB_ERR.H):

- E_OK (0x00) Shutdown excuted successfully

Example

...

#include "pb_if.h"

...

{

 // Initialize PROFIBUS API

 ...

 // Shut down PROFIBUS API

 profi_end();

}

User Interface

User Manual Page: 71

4.4.2 Send / Receive Interface

The send/receive interface provides by means for both control flow and data flow between host and
controller.

Data flow between the application and the communication is described by a service invariant and a large
number of service specific data structures.

Control flow is directed by means of two functions, which control the data flow in both directions.

The two cases described above are covered by two interface functions in the Softing PROFIBUS
implementations.

The profi_snd_req_res function is used for sending requests and responses. The profi_rcv_con_ind
function is used to receive confirmations and indications.

4.4.2.1 Profi-Snd-Req-Res

The profi_snd_req_res function is used for sending requests and responses to PROFIBUS interface.

INT16 profi_snd_req_res

(
IN T_PROFI_SERVICE_DESCR* pSdb,
IN VOID* pData,
IN PB_BOOL Dummy
);

Function parameter description:

pSdb: Pointer to the data structure of type T_PROFI_SERVICE_DESCR
pData: Pointer to service specific parameters and data
Dummy: Dummy parameter

Possible function return values(defined in the header file PB_ERR.H):

- E_OK (0) Function executed correctly
- E_IF_FATAL_ERROR (7) Unrecoverable error on PROFIBUS controller
- E_IF_NO_CNTRL_RES (10) Controller does not respond (CMI_TIMEOUT)
- E_IF_INVALID_LAYER (12) Invalid layer
- E_IF_INVALID_SERVICE (13) Invalid service identifier
- E_IF_INVALID_PRIMITIVE (14) Invalid service primitive
- E_IF_INVALID_DATA_SIZE (15) Not enough CMI data block memory
- E_IF_RESOURCE_UNAVAILABLE (21) No resource available
- E_IF_NO_PARALLEL_SERVICES (22) No parallel services allowed
- E_IF_SERVICE_CONSTR_CONFLICT (23) Service temporarily not executable

 PROFIBUS Application Program Interface

Page: 72 PROFIBUS

- E_IF_SERVICE_NOT_SUPPORTED (24) Service not supported in subset
- E_IF_SERVICE_NOT_EXECUTABLE (25) Service not executable
- E_IF_INVALID_PARAMETER (30) Invalid parameter in REQ or RES
- E_IF_PAPI_NOT_INITIALIZED (33) API not initialized
- E_IF_OS_ERROR (255) OS system error

NOTES:

If profi_snd_req_res function fails with E_IF_NO_CTRL_RES, the controller did not respond during
the send time-out value specified in profi_set_default. You can obtain extended error information
with GetLastError if the function returns E_IF_OS_ERROR.

Example

...

#include "pb_if.h"

...

{

 T_PROFI_SERVICE_DESCR sdb; // Service description

 T_VAR_READ_REQ readReq; // Read request

 INT16 rc;

 USIGN8 invokeId;

 // initialize the PROFIBUS API

 ...

 // send a FMS_READ request

 // fill the service description

 sdb.layer = FMS;

 sdb.service = FMS_READ;

 sdb.primitive = REQ;

 sdb.invoke_id = ++invokeId;

 sdb.comm_ref = 5;

 // fill the read request

 readReq.acc_spec.tag = ACCESS_INDEX;

 readReq.acc_spec.id.index = 20;

 readReq.subindex = 0;

 if (E_OK != (rc = profi_snd_req_res(&sdb,(void *)&readReq,PB_TRUE)))

 {

 // Error handling

 ...

 }

 ...

}

User Interface

User Manual Page: 73

4.4.2.2 Profi-Rcv-Con-Ind

The profi_rcv_con_ind function is used to receive a service indication or service confirmation from the
PROFIBUS interface when available.

INT16 profi_rcv_con_ind
 (
 IN T_PROFI_SERVICE_DESCR* pSdb,
 IN VOID* pData,
 INOUT USIGN16* pDataLength
);

Function parameter description:

pSdb: Buffer for service description block
pData: Buffer for service specific data block
pDataLen: On function invocation: maximal size of data block
 On function return: actual size of service specific data block

The function returns CON_IND_RECEIVED to signal that a confirmation or indication is available.

Possible function return values (defined in the header file PB_ERR.H):

- NO_CON_IND_RECEIVED (0) There is no confirmation or indication
- CON_IND_RECEIVED (1) Confirmation or indication is available

- E_IF_FATAL_ERROR (7) Unrecoverable error on PROFIBUS controller
- E_IF_NO_CNTRL_RES (10) Controller does not respond (CMI_TIMEOUT)
- E_IF_INVALID_DATA_SIZE (15) Size of data block provided not sufficient
- E_IF_CMI_ERROR (20) Serious CMI error
- E_IF_RESOURCE_UNAVAILABLE (21) No resource available
- E_IF_PAPI_NOT_INITIALIZED (33) API not initialized
- E_IF_OS_ERROR (255) OS system error

NOTES:

Extended error information can be obtained with GetLastError if the function returns
E_IF_OS_ERROR.

 PROFIBUS Application Program Interface

Page: 74 PROFIBUS

Example

...

#include "pb_if.h"

...

{

 T_PROFI_SERVICE_DESCR sdb; // Service description

 BYTE data[MAX_FMS_PDU_LENGTH]; // Data buffer

 USIGN16 dataLen;

 INT16 rc;

 // Initialize PROFIBUS API

 ...

 // Receive service indication or service confirmation

 dataLen = sizeof(data);

 rc = profi_rcv_con_ind(&sdb, &data, &dataLen);

 if (rc == CON_IND_RECEIVED)

 {

 // handle indication or confirmation

 ...

 }

 else

 {

 if (rc == NO_CON_IND_RECEIVED)

 {

 // nothing received

 ...

 }

 else

 {

 //Error handling

 ...

 }

 }

 ...

}

User Interface

User Manual Page: 75

4.4.3 Data Interface

In addition to the send/receive interface, the PROFIBUS Application Layer Interface offers a data interface
which consists of data structures shared by host and controller. This data interface allows fast cyclic data
transfer.

The data interface is performed by functions, which provide the data flow from and to the DPRAM area.

4.4.3.1 Profi-Set-Data

Using the profi_set_data function, shared data located in the DPRAM area can be written or modified.

INT16 profi_set_data
 (
 IN USIGN8 DataId,
 IN USIGN16 Offset,
 IN USIGN16 DataSize,
 IN VOID* pData,
);

Function parameter description:

DataId: Identifier of the specified data structure in the Data Interface
Offset: Offset within the data structure
DataSize: Number of bytes to be written to the DPRAM
pData: Data block to be written

Possible values of data_id (defined in the header file PB_IF.H):

ID_DP_SLAVE_IO_IMAGE 0x80 Identifier of image for slave I/O data (DP)

The structures of the data blocks are described in the service specific parts of the PROFIBUS User Manual.

Possible function return values(defined in the header file PB_ERR.H):

- E_OK (00) Function executed correctly
- E_IF_INVALID_DATA_SIZE (15) Not enough CMI data block memory
- E_IF_CMI_ERROR (20) Serious CMI error
- E_IF_SERVICE_NOT_SUPPORTED (24) Identifier is not supported
- E_IF_PAPI_NOT_INITIALIZED (33) API not initialized
- E_IF_INVALID_DP_STATE (242) PROFIBUS interface is not in OPERATE state
- E_IF_OS_ERROR (255) OS system error

NOTES:

 PROFIBUS Application Program Interface

Page: 76 PROFIBUS

Writing data to the ID_DP_STATUS_IMAGE is not supported in this version.

Extended error information can be obtained with GetLastError if the function returns
E_IF_OS_ERROR.

Example

...

#include "pb_if.h"

...

{

 USIGN16 offset;

 INT16 rc;

 // Initialize PROFIBUS API

...

 // Prepare and write DP data

 ...

 if (E_OK != (rc = profi_set_data(ID_DP_SLAVE_IO_IMAGE,offset,sizeof(data),&data)))

 {

 //Error handling

 ...

 }

}

User Interface

User Manual Page: 77

4.3.3.2 Profi-Get-Data

The profi_get_data function is used to read shared data located in the DPRAM area.

INT16 profi_get_data
 (
 IN USIGN8 DataId,
 IN USIGN16 Offset,
 INOUT USIGN16* pDataSize,
 OUT VOID* pData
);

Function parameter description:

DataId: Identifier of the specified data structure in the Data Interface
Offset: Offset within the data structure
pDataSize: On function invocation: maximal size of the data buffer (pData)
 On function return: number of bytes actually read
pData: Pointer to data buffer

Possible values of data_id (defined in the header file PB_IF.H):

ID_DP_SLAVE_IO_IMAGE 0x80 Identifier of image for slave I/O data (DP)
ID_DP_STATUS_IMAGE 0x81 Identifier of image for status data (DP)
ID_EXCEPTION_IMAGE 0xF0 Identifier of image for exception data (IF)
ID_FW_VERS_IMAGE 0xF1 Identifer of image for firmware version (IF)
ID_SERIAL_DEVICE_NUMBER 0xF2 Identifier for image for serial device number (IF)

The structures of the data blocks are described in the service specific parts (IF, DP) of the manual.

Possible function return values(defined in the header file PB_ERR.H):

- E_OK (00) Function executed correctly
- E_IF_INVALID_DATA_SIZE (15) Not enough CMI data block memory
- E_IF_CMI_ERROR (20) Serious CMI error
- E_IF_SERVICE_NOT_SUPPORTED (24) Identifier is not supported
- E_IF_PAPI_NOT_INITIALIZED (33) API not initialized
- E_IF_INVALID_DP_STATE (242) PROFIBUS interface is not in OPERATE state
- E_IF_OS_ERROR (255) OS system error

NOTES:
Extended error information can be obtained with GetLastError if the function returns
E_IF_OS_ERROR.

 PROFIBUS Application Program Interface

Page: 78 PROFIBUS

Example

...

#include "pb_if.h"

...

{

 USIGN16 offset;

 USIGN16 dataSize;

 INT16 rc;

 // Initialize PROFIBUS API

 ...

 // Read DP data

 dataSize = sizeof(data);

 if (E_OK == (rc = profi_get_data(ID_DP_SLAVE_IO_IMAGE,offset,&dataSize,&data)))

 {

 // Got data from DP slave

 ...

 }

 else

 {

 //Error handling

 ...

 }

 ...

}

User Interface

User Manual Page: 79

4.3.3.4 Profi-Set-Dps-Input-Data

The profi_set_dps_input_data function writes the input data of the DP slave to the DP-Slave input data
device. It always writes the full length of the data.

INT16 profi_set_dps_input_data

(
IN USIGN8* pData,
IN USIGN8 DataLength,
OUT USIGN8* pState
);

Function parameter description:

pData: Pointer to a USIGN8 variable containing the input data
DataLength: Number of input data to be written (in bytes). If the number does not correspond with

the configured length of the input data, the error message
‘E_IF_INVALID_DATA_SIZE’ is returned.

pState: Pointer to the current input data status with:
- DPS_INPUT_STATE_FREEZE_ENABLED

The slave has enabled the function for freezing the inputs.
- DPS_INPUT_STATE_FREEZE_COMMAND

A corresponding Global_Control command was received. Since the last time
the function profi_set_dps_input_data was called the input data have been
taken over as the data to be transmitted from the slave to the master.A
corresponding Global_Control command for picking up the input data was
received from the master. After the execution of this function the bit is reset
automatically.

Possible function return values(defined in the header file PB_ERR.H):

- E_OK (00) Function executed correctly
- E_IF_INVALID_DATA_SIZE (15) Too much user data
- E_IF_PAPI_NOT_INITIALIZED (33) API not initialized
- E_IF_OS_ERROR (255) OS system error

NOTES:
Extended error information can be obtained with GetLastError if the function returns
E_IF_OS_ERROR.

 PROFIBUS Application Program Interface

Page: 80 PROFIBUS

Example

...

#include "pb_if.h"

...

{

 USIGN8 DpsInputDataLength; // Length of DP-Slave input data

 USIGN8 DpsInputDataState; // DP-Slave input data state

 INT16 rc; // Return code

 // Initialize PROFIBUS API

 ...

 // Write input data and read recent input data state

 DpsInputDataLength = sizeof(DpsInputData);

 if (E_OK == (rc = profi_set_dps_input_data(&DpsInputData,

 DpsInputDataLength,

 &DpsInputDataState)))

 {

 // Got recent input data state

 ...

 }

 else

 {

 //Error handling

 ...

 }

 ...

}

User Interface

User Manual Page: 81

4.4.3.5 Profi-Get-Dps-Input-Data

The profi_get_dps_input_data function reads the currently set inputs and the associated status of the DP
slave from the DP-Slave input data device.

INT16 profi_get_dps_input_data

(
OUT USIGN8* pData,
INOUT USIGN8* pDataLength,
OUT USIGN8* pState
);

Function parameter description:

pData: Pointer to a USIGN8 variable array to read the inputs of the slave.
pDataLength: (IN) Pointer to a USIGN8 variable indicating the buffer size in bytes

(OUT) Number of input data read
pState: Pointer to the current input data status with:
 - DPS_INPUT_STATE_FREEZE_ENABLED
 The slave has enabled the function for freezing the inputs.

- DPS_INPUT_STATE_FREEZE_COMMAND
Since the last 'profi_set_dps_input_data' a corresponding Global_Control
command has been received. The status is read-only. The bit will only be
reset with the function profi_set_dps_input_data.

Possible function return values(defined in the header file PB_ERR.H):

- E_OK (00) Function executed correctly
- E_IF_INVALID_DATA_SIZE (15) User buffer to small
- E_IF_PAPI_NOT_INITIALIZED (33) API not initialized
- E_IF_OS_ERROR (255) OS system error

NOTES:
Extended error information can be obtained with GetLastError if the function returns
E_IF_OS_ERROR.

 PROFIBUS Application Program Interface

Page: 82 PROFIBUS

Example

...

#include "pb_if.h"

...

{

 USIGN8 DpsInputDataBufferLength; // Length of DP-Slave input data buffer

 USIGN8 DpsInputDataState; // DP-Slave input data state

 INT16 rc; // Return code

// Initialize PROFIBUS API

 ...

 // Read input data and recent input data state

 DpsInputDataBufferLength = sizeof(DpsInputDataBuffer);

 if (E_OK == (rc = profi_get_dps_input_data(&DpsInputDataBuffer,

 &DpsInputDataBufferLength,

 &DpsInputDataState)))

 {

 // Got input data and recent input data state

 ...

 }

 else

 {

 //Error handling

 ...

 }

 ...

}

User Interface

User Manual Page: 83

4.4.3.6 Profi-Get-Dps-Output-Data

The profi_get_dps_output_data function reads the current outputs of the DP slave from the DP-Slave
output data device.

INT16 profi_get_dps_output_data
(
OUT USIGN8* pData,
INOUT USIGN8* pDataLength,
OUT USIGN8* pState
);

Function parameter description:

pData: Pointer to a USIGN8 variable array to read the outputs of the slave.
pDataLength: (IN) Pointer to a USIGN8 variable indicating the buffer size in bytes
 (OUT) Number of output data read
pState: Pointer to the current output data status with:
 - DPS_OUTPUT_STATE_SYNC_ENABLED
 The function for freezing the outputs has been enabled.

- DPS_OUTPUT_STATE_SYNC_COMMAND
A corresponding Global_Control command was received. Since the last time
the function profi_get_dps_output_data was called, a Sync command has
been received upon which received upon which new output data have been
made ready. The bit is cleared automatically after access.

- DPS_OUTPUT_STATE_CLEAR_DATA
The outputs are in failsafe state. A corresponding command was received
from the master.

- DPS_OUTPUT_STATE_VALID_DATA
No transmission errors have occurred during data transmission from the
master and user data are exchanged (no timeout or watchdog error).

- DPS_OUTPUT_STATE_NEW_DATA
New output data were received from the master. Since the last access via
profi_get_dps_output_data function new data have been delivered
(independent of the Sync command). With this bit you can prevent reusing
old data. The bit is cleared after access.

- DPS_OUTPUT_STATE_GLOBAL_CONTROL
Since the last time the output data were read, a Global_Control command
has been received. The bit is cleared as soon as the output data have been
read.

Possible function return values(defined in the header file PB_ERR.H):

- E_OK (00) Function executed correctly
- E_IF_INVALID_DATA_SIZE (15) User buffer to small
- E_IF_PAPI_NOT_INITIALIZED (33) API not initialized
- E_IF_OS_ERROR (255) OS system error

 PROFIBUS Application Program Interface

Page: 84 PROFIBUS

NOTES:
Extended error information can be obtained with GetLastError if the function returns
E_IF_OS_ERROR.

Example

...

#include "pb_if.h"

...

{

 USIGN8 DpsOutputDataBufferLength; // Length of DP-Slave output data buffer

 USIGN8 DpsOutputDataState; // DP-Slave output data state

 INT16 rc; // Return code

 // Initialize PROFIBUS API

 ...

 // Read output data and current output data state

 DpsOutputDataBufferLength = sizeof(DpsOutputDataBuffer);

 if (E_OK == (rc = profi_get_dps_output_data(&DpsOutputDataBuffer,

 &DpsOutputDataBufferLength,

 &DpsoutputDataState)))

 {

 // Got output data and current output data state

 ...

 }

 else

 {

 //Error handling

 ...

 }

 ...

}

User Interface

User Manual Page: 85

4.4.4 Additional Interface Functions

4.4.4.1 Profi-Get-Versions

The profi_get_versions function reads the version string of the PAPI dynamic link library and of the
firmware on the PROFIBUS hardware.

INT16 profi_get_versions

(
OUT char* pPapiVersion,
OUT char* pFirmwareVersion,
);

Function parameter description:

pPapiVersion: Pointer to a buffer for the version string of the PAPI DLL
pFirmwareVersion: Pointer to a buffer for the version string of the firmware on the PROFIBUS hardware

Possible function return values (defined in the header file PB_ERR.H):

- E_OK (00) Function executed correctly
- E_IF_NO_CNTRL_RES (10) Cannot open board device
- E_IF_OS_ERROR (255) OS system error

NOTES:

Both buffers for the version strings must have at least the size of VERSION_STRING_LENGTH.
The PROFIBUS API does not have to be initialized to get to get the version strings.
Extended error information can be obtained with GetLastError if the function returns
E_IF_OS_ERROR.

Example

...

#include "pb_if.h"

...

{

 char papiVersion[VERSION_STRING_LENGTH];

 char firmwareVersion[VERSION_STRING_LENGTH];

 INT16 rc;

 if (E_OK == (rc = profi_get_versions(papiVersion,firmwareVersion)))

 {

 // Got the version strings

 }

}

 PROFIBUS Application Program Interface

Page: 86 PROFIBUS

4.4.4.2 Profi-Get-Serial-Device-Number

The profi_get_serial_device_number function reads the serial device number of the PROFIBUS
hardware.

INT16 profi_get_serial_device_number
(
OUT USIGN32 * pSerialDeviceNumber
);

Function parameter description:

pSerialDeviceNumber: Pointer to the variable for serial device number

Possible function return values (defined in the header file PB_ERR.H):

- E_OK (00) Function executed correctly
- E_IF_NO_CNTRL_RES (10) Cannot open board device
- E_IF_OS_ERROR (255) OS system error

NOTES:

The PROFIBUS API does not have to be initialized to get to get the serial device number.
Extended error information can be obtained with GetLastError if the function returns
E_IF_OS_ERROR.

Example

...

#include "pb_if.h"

...

{

 USIGN32 serialDeviceNumber;

 INT16 rc;

 if (E_OK == (rc = profi_get_serial_device_number(&serialDeviceNumber)))

 {

 // Got the serial device number

 }

}

User Interface

User Manual Page: 87

4.5 ENHANCED PROFIBUS APPLICATION PROGRAM INTERFACE

The enhanced PROFIBUS Application Program Interface contains a set of new functions. These functions
have similar functionality as the standard PROFIBUS Application Program Interface functions, but they use
Win32 device handles as parameters for describing where to read or write frames or data.

This interface encapsulates the whole functionality of the protocol kernel device driver. You can use all
devices provided by this driver with the functions of the interface.

The enhanced PROFIBUS API consists of these functions:

profi_open_basic_management Open basic management device

profi_open Open device

profi_close Close device

profi_write_service Send frame

profi_read_service Receive frame

profi_read_multi Receive frame from device array

profi_write_data Write DP slave data

profi_read_data Read DP slave data

profi_get_cntrl_info Read version string of firmware
Read serial device number

profi_set_timeout Set time-out

profi_get_timeout Get time-out

profi_set_queue_size Set queue size

profi_get_queue_size Get queue size

profi_get_overrun_count Get overrun count

 PROFIBUS Application Program Interface

Page: 88 PROFIBUS

4.5.1 Profi-Open-Basic-Management

The profi_open_basic_management function is used to initialize the enhanced PROFIBUS API and
opens the basic management device of the desired board.

HANDLE profi_open_basic_management
(
IN USIGN8 Board,
IN USIGN8 Channel,
IN INT32 DesiredAccess
);

Function parameter description:

Board Number (between 0 and 9) of the board to work on.
Channel PROFIBUS channel number. This version supports only channel 0
DesiredAccess Specifies the type of access to the basic management device. An application

can obtain read access, write access or read-write access. You can use the
following flag constants to build a value for this parameter. Both
GENERIC_READ and GENERIC_WRITE must be set to obtain read/write
access. If DesiredAccess is 0, neither read nor write access is allowed; only
IOControl operations that do not need a specific access right can be
performed on the device.
Value Meaning
GENERIC_READ Specifies read access to the device. Data can be

read from the device.
GENERIC_WRITE Specifies write access to the device. Data can be

 written to the device.

Possible function return values:

- If the functions succeeds, the return value is the open handle of the basic management device.
- If the functions fails, the return value is INVALID_HANDLE_VALUE. To obtain extended error information,

call GetLastError.

NOTES:

If more than one board is used, profi_open_basic_management must be called for each board to
obtain the handle of the basic management device.

User Interface

User Manual Page: 89

Example

...

#include "pb_if.h"

...

{

 HANDLE hBasicMgmt;

 USIGN8 boardNr;

 ...

 if (INVALID_HANDLE_VALUE == (hBasicMgmt = profi_open_basic_management(boardNr,0,

 GENERIC_READ)))

{

 ... // error handling

}

}

 PROFIBUS Application Program Interface

Page: 90 PROFIBUS

4.5.2 Profi-Open

Use the profi_open function to open any device of the protocol device driver besides the basic
management device. This function checks if it need to create the device with an IoControl call to the basic
management device and than opens the device with the desired access rights.

HANDLE profi_open
(
IN HANDLE hManagement,
IN INT32 DeviceType,
IN USIGN32 Index,
IN INT32 DesiredAccess
);

Function parameter description:

hManagement: Handle to the management device of the desired board. The basic

management device can be used to open all device types. The DP
management device is only able to open DP devices. The FDL management
device opens only FDL SAP devices and the FMS management device
opens only FMS CR devices.

DeviceType: Type of the device to open. You can open any device of the protocol device
driver.
Value Meaning
DEVICE_DP_MANAGEMENT DP management device
DEVICE_DP_SERVICE DP service device
DEVICE_DP_SLAVE_DATA DP slave data device
DEVICE_DP_MSAC DP master slave acyclic device
DEVICE_FDL_MANAGEMENT FDL management device
DEVICE_FDL_SAP FDL SAP device
DEVICE_FMS_MANAGEMENT FMS management device
DEVICE_FMS_CR FMS CR device

Index: If more than one device of a device type can be opened, the index (zero
based) of the device must be passed. You can open: 128 DP service, DP
master slave acyclic and DP slave data devices, 64 FDL SAP devices and
48 FMS CR devices. This parameter is ignored for all management devices.

DesiredAccess Specifies the type of access to the device. An application can obtain read
access, write access or read-write access. The following flag constants can
be used to build a value for this parameter. Both GENERIC_READ and
GENERIC_WRITE must be set to obtain read-write access. If
DesiredAccess is 0, neither read nor write access is allowed; only IOControl
operations that do not need a specific access right can be performed on the
device.
Value Meaning
GENERIC_READ Specifies read access to the device
GENERIC_WRITE Specifies write access to the device.

User Interface

User Manual Page: 91

Possible function return values:

- If the function succeeds, the return value is the open handle of the device.
- If the functions fails, the return value is INVALID_HANDLE_VALUE. To obtain extended error information,

call GetLastError.

Example

...

#include "pb_if.h"

#include "devtypes.h"

...

{

 HANDLE hBasicMgmt;

 HANDLE hCR34;

 // Open the basic management device

 ...

 // Open the FMS CR 34 device for read and write access

 if (INVALID_HANDLE_VALUE == (hCR34 = profi_open(hBasicMgmt,DEVICE_FMS_CR,34,

 GENERIC_READ | GENERIC_WRITE)))

 {

 // error handling

 ...

 }

 ...

}

 PROFIBUS Application Program Interface

Page: 92 PROFIBUS

4.5.3 Profi-Close

The profi_close function is used to close any device opened with profi_open_basic_management or
profi_open.

BOOL profi_close
(
IN HANDLE hDevice
);

Function parameter description:

hDevice: Handle of the device to close

Possible function return values:

- If the functions succeeds, the return value is TRUE.
- If the functions fails, the return value is FALSE. To obtain extended error information, call GetLastError.

Example

...

#include "pb_if.h"

...

{

 HANDLE handle;

 // open the device

 ...

 if (!profi_close(handle))

 {

 // error handling

 ...

 }

}

User Interface

User Manual Page: 93

4.5.4 Profi-Write-Service

The profi_write_service function writes a service frame to a service-oriented device. The frame could be a
service request or a response to a received indication.

INT16 profi_write_service
(
IN HANDLE hDevice,
IN T_PROFI_SERVICE_DESCR* pSdb,
IN VOID* pData
);

Function parameter description:

hDevice Handle of the service-oriented service device
pSdb Pointer to the description of the service to send
pData Pointer to the service-specific parameters and data

Possible function return values(defined in the header file PB_ERR.H):

- E_OK (0) Function executed correctly
- E_IF_FATAL_ERROR (7) Unrecoverable error on PROFIBUS controller
- E_IF_NO_CNTRL_RES (10) Controller does not respond (CMI_TIMEOUT)
- E_IF_INVALID_LAYER (12) Invalid layer
- E_IF_INVALID_SERVICE (13) Invalid service identifier
- E_IF_INVALID_PRIMITIVE (14) Invalid service primitive
- E_IF_INVALID_DATA_SIZE (15) Not enough CMI data block memory
- E_IF_INVALID_COMMREF (16) Invalid communication reference
- E_IF_CMI_ERROR (20) Serious CMI error
- E_IF_RESOURCE_UNAVAILABLE (21) No resource available
- E_IF_NO_PARALLEL_SERVICES (22) No parallel services allowed
- E_IF_SERVICE_CONSTR_CONFLICT (23) Service temporarily not executable
- E_IF_SERVICE_NOT_SUPPORTED (24) Service not supported in subset
- E_IF_SERVICE_NOT_EXECUTABLE (25) Service not executable
- E_IF_INVALID_PARAMETER (30) Invalid parameter in REQ or RES
- E_IF_PAPI_NOT_INITIALIZED (33) API not initialized
- E_IF_OS_ERROR (255) OS system error

NOTES:

Extended error information can be obtained with GetLastError if the function returns
E_IF_OS_ERROR.

If profi_write_service fails with E_IF_NO_CTRL_RES the controller hasn’t responded during the write
time-out time of the service devices. You can set the time-out value by calling profi_set_timeout.

You can only write services to a device which are supported by the device. See the device
description to check if the device supports the service. You can’t write any services to the data
oriented DP slave data devices. The service device pointed to by hDevice must be opened with the
function profi_open and write access rights

 PROFIBUS Application Program Interface

Page: 94 PROFIBUS

Example

#include "pb_if.h"

...

{

 HANDLE hCR3; // Handle to FMS CR 3 device

 T_PROFI_SERVICE_DESCR sdb; // Service description

 T_VAR_READ_REQ readReq; // Read request

 INT16 rc;

 USIGN8 invokeId;

 // Open the handle to FMS CR 3 device

 ...

 // Send a FMS_READ request

 // Fill the service description

 sdb.layer = FMS;

 sdb.service = FMS_READ;

 sdb.primitive = REQ;

 sdb.invoke_id = ++invokeId;

 sdb.comm_ref = 5; // Send it to CR 5

 // fill the read request

 readReq.acc_spec.tag = ACCESS_INDEX;

 readReq.acc_spec.id.index = 20;

 readReq.subindex = 0;

 if (rc = profi_write_service(hCR3, &sdb, (void *)&readReq))

 {

 // Error handling

 ...

 }

 ...

}

4.5.5 Profi-Read-Service

The profi_read_service function reads the oldest received frame from a service-oriented device. The
frame could be a service indication or a confirmation for a requested service.

INT16 profi_read_service
(
IN HANDLE hDevice,
OUT T_PROFI_SERVICE_DESCR* pSdb,
OUT VOID* pData,
INOUT USIGN16* pDataLen,
);

Function parameter description:

User Interface

User Manual Page: 95

hDevice Handle of the service-oriented device
pSdb Pointer to the buffer for the received service description
pData Pointer to the buffer for the received service-specific parameters and data
pDataLen On function invocation: size, in bytes, of the buffer pointer by data.

On function return: size of the received service-specific data.

The function returns CON_IND_RECEIVED to signal that a confirmation or indication is available.

Possible function return values (defined in the header file PB_ERR.H):

- NO_CON_IND_RECEIVED (0) There is no confirmation or indication
- CON_IND_RECEIVED (1) Confirmation or indication is available

- E_IF_FATAL_ERROR (7) Unrecoverable error on PROFIBUS controller
- E_IF_NO_CNTRL_RES (10) Controller does not respond (CMI_TIMEOUT)
- E_IF_INVALID_DATA_SIZE (15) Size of data block provided not sufficient
- E_IF_CMI_ERROR (20) Serious CMI error
- E_IF_RESOURCE_UNAVAILABLE (21) No resource available
- E_IF_PAPI_NOT_INITIALIZED (33) API not initialized
- E_IF_OS_ERROR (255) OS system error

NOTES:

Extended error information can be obtained with GetLastError if the function returns
E_IF_OS_ERROR.

profi_read_service returns after a frame was received or the read service time-out elapsed. The time-
out value can be set by calling profi_set_timeout.
The service device pointed to by hDevice must be opened with the function profi_open and read
access rights.

 PROFIBUS Application Program Interface

Page: 96 PROFIBUS

Example

...

#include "pb_if.h"

...

{

 HANDLE hCR3; // Handle to FMS CR 3 device

 T_PROFI_SERVICE_DESCR sdb; // Service

description

 BYTE data[MAX_FMS_PDU_LENGTH]; // Data

buffer

 USIGN16 dataLen;

 INT16 rc;

 // Open the handle to FMS CR 3 device

 ...

 // Read a received frame from FMS CR 3

 dataLen = sizeof(data);

 rc = profi_read_service(hService, &sdb, &data, &dataLen);

 switch(rc)

 {

 case CON_IND_RECEIVED:

 {

 // frame received

 ...

 }

 case NO_CON_IND_RECEIVED:

 {

 // No frame received

 ...

 }

 default:

 {

 //Error handling

 ...

 }

 }

 ...

}

User Interface

User Manual Page: 97

4.5.6 Profi-Read-Multi

The profi_read_multi function reads the oldest received service frame from an array of service-oriented
devices. The frame could be a service indication or a confirmation for a requested service.

INT16 profi_read_multi

(
OUT T_PROFI_SERVICE_DESCR* pSdb,
OUT VOID* pData,
INOUT USIGN16* pDataLen,
IN USIGN16 NrOfHandles,
IN HANDLE* phDevices,
);

Function parameter description:

pSdb Pointer to the buffer for the service description block
pData Pointer to the buffer to receive service-specific parameters and data
pDataLen On function invocation: size, in bytes, of the buffer pointer by data.

On function return: size of the received service-specific data.
NrOfHandles Number of device handles in the device array pointed by pHandlesService.
phDevices Pointer to an array of service device handles.

The function returns CON_IND_RECEIVED to signal that a confirmation or indication is available.

Possible function return values (defined in the header file PB_ERR.H):

- NO_CON_IND_RECEIVED (0) There is no confirmation or indication
- CON_IND_RECEIVED (1) Confirmation or indication is available

- E_IF_FATAL_ERROR (7) Unrecoverable error on PROFIBUS controller
- E_IF_NO_CNTRL_RES (10) Controller does not respond (CMI_TIMEOUT)
- E_IF_INVALID_DATA_SIZE (15) Size of data block provided not sufficient
- E_IF_CMI_ERROR (20) Serious CMI error
- E_IF_RESOURCE_UNAVAILABLE (21) No resource available
- E_IF_PAPI_NOT_INITIALIZED (33) API not initialized
- E_IF_OS_ERROR (255) OS system error

 PROFIBUS Application Program Interface

Page: 98 PROFIBUS

NOTES:

Extended error information can be obtained with GetLastError if the function returns
E_IF_OS_ERROR.

The function checks every device in the array, beginning with the first if a frame has been received. If
a device received a frame, profi_read_multi returns with the received frame. If more than one device
received a frame, the oldest received frame is returned.

profi_read_multi returns after a frame was received or the read service time-out elapsed. The time-
out value can be set by calling profi_set_timeout.

All service devices in the array pointed to by phDevices must be opened with the function
profi_open and read access rights

Example

...

#include "pb_if.h"

...

{

 HANDLE hDevs[6]; // Device handle array

 T_PROFI_SERVICE_DESCR sdb; // Service description

 BYTE data[MAX_FMS_PDU_LENGTH]; // Data buffer

 USIGN16 dataLen;

 INT16 rc;

 int i;

 // open basic management of board 0

 if (INVALID_HANDLE_VALUE == (hDevs[0]=profi_open_basic_management(0,0,GENERIC_READ)))

 {

 // Error handling

 ...

 }

 // open the handles to FMS CR2 - CR6 devices

 for (i = 2; i <= 6; i++)

 {

 if (INVALID_HANDLE_VALUE == (hDevs[i-1] = profi_open(hDevs[0], DEVICE_FMS_CR, i,

 GENERIC_READ | GENERIC_WRITE)))

 {

 // Error handling

 ...

 }

 }

 ...

 // Read a received frame from the devices in the device array

 dataLen = sizeof(data);

User Interface

User Manual Page: 99

 rc = profi_read_multi(&sdb, &data, &dataLen, 6, hDevs);

 switch(rc)

 {

 case CON_IND_RECEIVED:

 {

 // frame received

 ...

 }

 case NO_CON_IND_RECEIVED:

 {

 // No frame received

 ...

 }

 default:

 {

 //Error handling

 ...

 }

 }

}

 PROFIBUS Application Program Interface

Page: 100 PROFIBUS

4.5.7 Profi-Write-Data

The profi_write_data function writes data to a DP slave data device which is used to access the I/O area
of the DP slave.

INT16 profi_write_data
(
IN HANDLE hDevice,
IN VOID* pData,
IN USIGN16 DataLen
);

Function parameter description:

hDevice Handle of the DP slave data device to write the data
pData Data block to be written
DataLen Size, in bytes, of the data block pointed to by data

Possible function return values (defined in the header file PB_ERR.H):

- E_OK (00) Function executed correctly
- E_IF_INVALID_DATA_SIZE (15) Not enough CMI data block memory
- E_IF_CMI_ERROR (20) Serious CMI error
- E_IF_SERVICE_CONSTR_CONFLICT (23) Service not executable at time
- E_IF_PAPI_NOT_INITIALIZED (33) API not initialized
- E_IF_SLAVE_ERROR (240) No valid communication with the slave
- E_IF_SLAVE_DIAG_DATA (241) New diagnostic data available
- E_IF_INVALID_DP_STATE (242) PROFIBUS interface is not in OPERATE state
- E_IF_OS_ERROR (255) OS system error

NOTES:

Extended error information can be obtained with GetLastError if the function returns
E_IF_OS_ERROR.

User Interface

User Manual Page: 101

Example

...

#include "pb_if.h"

...

{

 HANDLE hData3;

 INT16 rc;

 // Open the DP slave data device of the slave 3

 ...

 // Write DP data

 if (rc = profi_write_data(hData3, &data, sizeof(data)))

 {

 //error handling

 ...

 }

 ...

}

 PROFIBUS Application Program Interface

Page: 102 PROFIBUS

4.5.8 Profi-Read-Data

The profi_read_data function reads data from a DP slave data device which is used to access the I/O area
of the DP slave.

INT16 profi_read_data
(
IN HANDLE hDevice,
OUT VOID* pData,
INOUT USIGN16* pDataLen
);

Function parameter description:

hDevice Handle of the DP slave data device to read the data
pData Pointer to the buffer to store the read data
pDatalen On function invocation: size, in bytes, of the data block pointed to by data

On function return: number of bytes read into data

Possible function return values (defined in the header file PB_ERR.H):

- E_OK (00) Function executed correctly
- E_IF_INVALID_DATA_SIZE (15) Not enough CMI data block memory
- E_IF_CMI_ERROR (20) Serious CMI error
- E_IF_SERVICE_CONSTR_CONFLICT (23) Service not executable at time
- E_IF_PAPI_NOT_INITIALIZED (33) API not initialized
- E_IF_SLAVE_ERROR (240) No valid communication with the slave
- E_IF_SLAVE_DIAG_DATA (241) New diagnostic data available
- E_IF_INVALID_DP_STATE (242) PROFIBUS interface is not in OPERATE state
- E_IF_OS_ERROR (255) OS system error

NOTES:

Extended error information can be obtained with GetLastError if the function returns
E_IF_OS_ERROR.

User Interface

User Manual Page: 103

Example

...

#include "pb_if.h"

...

{

 USIGN16 dataSize;

 HANDLE hData3;

 INT16 rc;

 // Open the DP slave data device of the slave 3

 ...

 // read DP data

 dataSize = sizeof(data);

 if ((rc = profi_read_data(hData3,&data,&dataSize)) == E_OK)

 {

 // Received data from DP slave 3

 ...

 }

 else

 {

 //Error handling

 ...

 }

 ...

}

 PROFIBUS Application Program Interface

Page: 104 PROFIBUS

4.5.9 Profi-Get-Cntrl-Info

The profi_get_cntrl_info function reads the version of the firmware and the serial device number of
PROFIBUS interface.

BOOL profi_get_cntrl_info
(
IN USIGN8 BoardNr,
OUT char* pFwVersion
OUT USIGN32* pSerialDeviceNumber
);

Function parameter description:

BoardNr Number of the board to read the version information
pFwVersion Pointer to the buffer for the version string of the firmware on the board
pSerialDeviceNumber Pointer to the serial device number

Possible function return values (defined in the header file PB_ERR.H):

- If the function succeeds, the return value is TRUE.
- If the function fails, the return value is FALSE. Extended error information can be obtained with

GetLastError.

NOTES:

The buffer for the version string must have at least the size of VERSION_STRING_LENGTH.

Example

...

#include "pb_if.h"

...

{

 USGIN8 boardNr;

 UNSIGN32 serialDeviceNumber;

 char firmwareVersion[VERSION_STRING_LENGTH];

 ...

 if (profi_get_fw_version(boardNr,firmwareVersion,&serialDeviceNumber))

 {

 // Received the firmware version string

 ...

 }

}

User Interface

User Manual Page: 105

4.5.10 Profi-Set-Timeout

The profi_set_timeout function is used to set the time-out values for service-oriented read and write
operations performed by the functions profi_write_service, profi_read_service and profi_read_multi.

BOOL profi_set_timeout

(
IN HANDLE hBasicMgmtDevice,
IN USIGN32 ReadTimeout,
IN USIGN32 WriteTimeout
);

Function parameter description:

hBasicMgmtDevice Handle of the basic management device
ReadTimeout Maximum duration of a read operation in milliseconds (WAIT_FOREVER for

infinite wait).
WriteTimeout Maximum duration of a write operation in milliseconds (WAIT_FOREVER for

infinite wait).

Possible function return values (defined in the header file PB_ERR.H):

- If the function succeeds, the return value is TRUE.
- If the function fails, the return value is FALSE. Extended error information can be obtained with

GetLastError.

NOTES:

The time-out set on one service device is used for all service devices of this board. Two different
time-outs cannot be set on one board.

A polling mode (do not wait) can be implemented by setting the time-out values to 0.

The default time-out values are 0.

The service device pointed to by hBasicMgmtDevice must be opened with read access rights.

 PROFIBUS Application Program Interface

Page: 106 PROFIBUS

Example

...

#include "pb_if.h"

...

{

 HANDLE hBasicMgmt;

 // Open the basic management device

 ...

 // Set time-out of 30 milliseconds

 if (!profi_set_timeout(hBasicMgmt,30,30))

 {

 // set timouts failt

 }

 ...

}

User Interface

User Manual Page: 107

4.5.11 Profi-Get-Timeout

The profi_get_timeout function is used to get the time-out values for service-oriented read and write
operations performed by the functions profi_write_service , profi_read_service and profi_read_multi.

BOOL profi_get_timeout

(
IN HANDLE hBasicMgmtDevice,
OUT USIGN32* pReadTimeout,
OUT USIGN32* pWriteTimeout
);

Function parameter description:

hBasicMgmtDevice Handle of the basic management device
pReadTimeout Maximum duration of a read operation in milliseconds.
pWriteTimeout Maximum duration of a write operation in milliseconds.

Possible function return values (defined in the header file PB_ERR.H):

- If the function succeeds, the return value is TRUE.
- If the function fails, the return value is FALSE. Extended error information can be obtained with

GetLastError.

Example

#include "pb_if.h"

...

{

 HANDLE hBasicMgmt;

 USIGN32 readTimeout, writeTimeout;

 // Open the basic management device

 ...

 // get timout values

 if (profi_get_timeout(hBasicMgmt,&readTimeout,&writeTimeout))

 {

 // Received time-out values

 }

 ...

}

 PROFIBUS Application Program Interface

Page: 108 PROFIBUS

4.5.12 Profi-Set-Queue-Size

The profi_set_queue_size function is used to set the maximum size of the queue for received frames of
the protocol driver. If the size of the queue exceeds the maximum size, a received frame will be ignored.
The number of ignored frames is counted in an overrun count which can be obtained by calling
profi_get_overrun_count

BOOL profi_set_queue_size
(
IN HANDLE hBasicMgmtDevice,
IN USIGN32 QueueSize
);

Function parameter description:

hBasicMgmtDevice Handle of the basic management device
QueueSize Maximum size of the frame queue for received frames.

Possible function return values (defined in the header file PB_ERR.H):

- If the function succeeds, the return value is TRUE.
- If the function fails, the return value is FALSE. Extended error information can be obtained with

GetLastError.

NOTES:

The received frames queue is used to store received frames in the driver, which are not read by
calling profi_read_service or profi_read_multi.

The maximum size of the received frames queue can be set for each board.
The default maximum size of the queue is 32.

Example

#include "pb_if.h"

{

 HANDLE hBasicMgmt;

 // Open the basic management device

 ...

// Set queue size to 100

 if (!profi_set_queue_size(hBasicMgmt,100))

 {

 // set queue size failt

 }

 ...

}

User Interface

User Manual Page: 109

4.5.13 Profi-Get-Queue-Size

The profi_get_queue_size function is used to obtain the maximum size of the queue for received frames
of the protocol driver.

BOOL profi_get_queue_size
(
IN HANDLE hBasicMgmtDevice,
OUT USIGN32* pQueueSize
);

Function parameter description:

hBasicMgmtDevice Handle of the basic management device
pQueueSize Maximum size of the frame queue for received frames

Possible function return values (defined in the header file PB_ERR.H):

- If the function succeeds, the return value is TRUE.
- If the function fails, the return value is FALSE. Extended error information can be obtained with

GetLastError.

NOTES:

The received frames queue is used to store received frames in the driver, which are not read by
calling profi_read_service or profi_read_multi.

Example

#include "pb_if.h"

{

 HANDLE hBasicMgmt;

 USIGN32 queueSize;

 // Open the basic management device

 ...

 // Set queue size to 100

 if (!profi_get_queue_size(hBasicMgmt, &queueSize))

 {

 // get queue size failt

 }

 ...

}

 PROFIBUS Application Program Interface

Page: 110 PROFIBUS

4.5.14 Profi-Get-Overrun-Count

The profi_get_overrun_count function is used to get the overrun count of the received frames queue of
the protocol driver. This value counts the number of frames arrived while the size of the received frames
queue exceeded the maximum queue size. Each call to this function resets the overrun count to 0.

BOOL profi_get_overrun_count
(
IN HANDLE hBasicMgmtDevice,
IN USIGN32* pOverrunCount
);

Function parameter description:

hBasicMgmtDevice Handle of the frame-oriented service device
pOverrunCount Number of ignored received frames

Possible function return values (defined in the header file PB_ERR.H):

- If the function succeeds, the return value is TRUE.
- If the function fails, the return value is FALSE. Extended error information can be obtained with

GetLastError.

NOTES:

The received frames queue is used to store received frames in the driver, which are not read by
calling profi_read_service or profi_read_multi.

Example

#include "pb_if.h"

...

{

 HANDLE hBasicMgmt;

 USIGN32 overrunCount;

 // Open the basic management device

 ...

 // Get overrun count

 if (profi_get_overrun_count(hBasicMgmt,&overrunCount))

 {

 // Received overrun count

 }

 ...

}

User Interface

User Manual Page: 111

4.6 INTERFACE RETURN VALUES

This chapter gives an overview of the user interface return values. All possible return values are described in
the header files PB_IF.H and PB_ERR.H.

Overview of User Interface error codes and return values

Identifier Value Description

- E_OK 0 No error occured

- NO_CON_IND_RECEIVED 0 No confirmation or indication available

- CON_IND_RECEIVED 1 Confirmation or indication ws received

- E_IF_FATAL_ERROR 7 Unrecoverable error on board 1)

- E_IF_INIT_INVALID_PARAMETER 8 Invalid initialization parameter

- E_IF_NO_CNTRL_RES 10 Controller does not respond

- E_IF_INVALID_CNTRL_TYPE_VERSION 11 Invalid controller type or invalid firmware version

- E_IF_INVALID_LAYER 12 Invalid layer

- E_IF_INVALID_SERVICE 13 Invalid service identifier

- E_IF_INVALID_PRIMITIVE 14 Invalid service primitive

- E_IF_INVALID_DATA_SIZE 15 Not enough CMI data block memory

- E_IF_INVALID_CMI_CALL 19 Invalid CMI call

- E_IF_CMI_ERROR 20 Error occured in CMI

- E_IF_RESOURCE_UNAVAILABLE 21 No resource available

- E_IF_NO_PARALLEL_SERVICES 22 No parallel services allowed

- E_IF_SERVICE_CONSTR_CONFLICT 23 Service temporarily not executable

- E_IF_SERVICE_NOT_SUPPORTED 24 Service not supported

- E_IF_SERVICE_NOT_EXECUTABLE 25 Service not executable

- E_IF_INVALID_ACCESS 26 Invalid access to protocol software

- E_IF_NO_CNTRL_PRESENT 28 No controller present

- E_IF_INVALID_PARAMETER 30 Invalid parameter in REQ or RES

- E_IF_INIT_FAILED 31 Init. API or Controller failed

- E_IF_EXIT_FAILED 32 Exit API or Controller failed

- E_IF_PAPI_NOT_INITIALIZED 33 API not initialized

- E_IF_SLAVE_DIAG_DATA 240 no data available

- E_IF_SLAVE_ERROR 241 no data exchange

- E_IF_INVALID_DP_STATE 242 DP is not in state clear/operate

- E_IF_READING_REGISTRY 243 Error reading registry

- E_IF_OS_ERROR 255 OS system (WIN,DOS) error

 PROFIBUS Application Program Interface

Page: 112 PROFIBUS

1) NOTE: If the interface error E_IF_FATAL_ERROR is indicated, the User can read additional
 information about this error via the service interface function profi_rcv_con_ind or data
 interface function profi_get_data:

 Read additional error information via profi_rcv_con_ind:

 Service-Description-Block for Indication:

 USIGN16 comm_ref 0

 USIGN8 layer FMB_USR

 USIGN8 service FMB_EXCEPTION

 USIGN8 primitive IND

 INT8 invoke_id 0

 INT16 result POS

 Data block for Indication:

 Data structure T_EXCEPTION

 USIGN8 task_id Task in wich the fatal system error is occurred

 USIGN8 par1 Exception parameter 1

 USIGN16 par2 Exception parameter 2

 USIGN16 par3 Exception parameter 3

 Read additional error information via profi_get_data:

 profi_get_data (ID_EXCEPTION_IMAGE, /* Identifier of the exception description */
 0, /* Offset in the exception description */
 (USIGN16 FAR*) &data_len, /* Size of the exception description */
 (T_EXCEPTION FAR*) &exception /* Pointer to the exception description */
);

 T_EXCEPTION exception; /* Defined in the header file PB_ERR.H */
 USIGN16 data_descr_len = sizeof(T_EXCEPTION);

PROFIBUS Application Program Interface

Basic Management

Version 5.2
Rev. 02

Date: 08-April-1999

Softing AG
Richard-Reitzner-Allee 6
D-85540 Haar
Phone (++49) 89 - 45 65 6 - 0
Fax (++49) 89 - 45 65 6 - 399

 Copyright by Softing AG, 1989-2003
All rights reserved.

PROFIBUS User Manual

PROFIBUS Application Program Interface

Copyright Notice

All rights are reserved. No part of these instructions may be reproduced (printed material,
photocopies, microfilm or other method) or processed, copied or distributed using electronic
systems in any form whatsoever without prior written permission of Softing AG.

The producer reserves the right to make changes to the scope of supply as well as changes to
technical data, even without prior notice.

A great deal of attention was made to the quality and functional integrity in designing,
manufacturing and testing the system. However, no liability can be assumed for potential errors
that might exist or for their effects. Should you find errors please inform your distributor of the
nature of the errors and the circumstances under which they occur. We will be responsive to all
reasonable ideas and will follow up on them, taking measures to improve the product if
necessary.

We call your attention to the fact that the company name and trademark as well as product
names are, as a rule, protected by trademark, patent and product brand laws.

Copyright 1989-2003 by Softing AG, Haar

Basic Management

User Manual Page: I

CONTENTS

1 SCOPE ...1

2 OVERVIEW ..3

3 FMB SERVICES...6

3.1 FMB-Set-Configuration ...6
3.2 FMB-Set-Value Services...12

3.2.1 FMB-Set-Busparameter...13
3.2.2 FMB-Set-Value ..15

3.3 FMB-Read-Value Services ...16
3.3.1 FMB-Read-Busparameter..17
3.3.2 FMB-Read-Value ...18

3.4 FMB-LSAP-Status...20
3.5 FMB-Get-Live-List ...22
3.6 FMB-FM2-Event..24
3.7 FMB-Reset ..25
3.8 FMB-Exit..26
3.9 FMB-Exception..27

4 CONFIGURATION PARAMETERS ...28

4.1 FMB Configuration ...28
4.1.1 VFD Configuration..28
4.1.2 CRL Configuration..29

4.1.2.1 Buffers for a Master-Master CR..29
4.1.2.2 Buffers for Masters in Master-Slave CRs ...30
4.1.2.3 Buffers for Slaves in Master-Slave CRs ...31
4.1.2.4 Buffers for connectionless CRs ..31

4.1.3 DP Configuration..32
4.1.4 FDLIF Configuration...32
4.1.5 Standard Configuration ..33
4.2 FDL Bus Parameters...34

4.2.1 Range of Values ..34
4.2.2 Recommended Bus Parameters for FMS Operation...37
4.2.3 Recommended Bus Parameters for FMS Operation using ASPC238
4.2.4 Recommended Bus Parameters for DP and FMS Operation..39
4.2.5 Recommended Bus Parameters for DP Operation ...40

APPENDIX A ..41

STANDARD ERROR STRUCTURE AND ERROR CODES..41

PROFIBUS Application Program Interface

Page: II PROFIBUS

Basic Management

User Manual Page: 1

1 SCOPE

Softing's PROFIBUS protocol software is designed to allow mixed operation of the protocol components
FAL, DP and FDLIF. These protocol components compete for the available memory and for access to FDL.
In order to coordinate the mixed operation of FAL, DP and FDLIF, a new management component was
introduced in the protocol stack. This management component is designated Basic Management (FMB).

Softing's PROFIBUS Application Program Interface provides uniform access to all service groups of the
PROFIBUS protocol. The common access functions are described in the "User Interface" part of the
PROFIBUS User Manual.

This document describes the specific services and configuration parameters of the Basic Management
(FMB).

PROFIBUS API

FMB
LLI

remote
FM7local

FM7

DP / FDLIF

FDL

FMS

FAL

FM2

DP/V1

This document should be read in conjunction with the following parts of the PROFIBUS User Manual:

• "User Interface" Describes the uniform access functions to all PROFIBUS services

• "FM7 Services" Describes the management services which are necessary to configure the
Fieldbus Application Layer (FAL)

• "DP Services" Describes the services which are necessary to configure the Decentral Periphery
(DP)

• "DP/V1 Services" Describes the services which are necessary to configure the Decentral Periphery
(DP/V1)

PROFIBUS Application Program Interface

Page: 2 PROFIBUS

Basic Management

User Manual Page: 3

2 OVERVIEW

The main goal of FMB is to configure the PROFIBUS protocol stack and to start FDL. For this reason, FMB
provides the services:

- FMB-Set-Configuration

- FMB-Set-Busparameter

Furthermore FMB provides services to set and read FDL parameters, to request LSAP configuration and
read the Live-List. This services are:

- FMB-Read-Busparameter

- FMB-Set-Value, FMB-Read-Value

- FMB-LSAP-Status

- FMB-Get-Live-List

To stop of the whole PROFIBUS protocol stack FMB provides the servcies:

- FMB-Reset

- FMB-Exit

In addition FMB indicates FM2 events and system fatal errors to the PROFIBUS user. The services for
indicating those events and errors are:

- FMB-FM2-Event

- FMB-Exception

PROFIBUS Application Program Interface

Page: 4 PROFIBUS

Overview of FMB services

Service group Identifier Code Page

System configuration FMB_SET_CONFIGURATION 27 6

Set and read FDL Bus Parameters FMB_SET_BUSPARAMETER 22 13
 FMB_READ_BUSPARAMETER 24 17

Set and read a single FDL parameter FMB_SET_VALUE 15 15
 FMB_READ_VALUE 16 18

Read status of FDL SAP FMB_LSAP_STATUS 17 20

Read Live-List FMB_GET_LIVE_LIST 26 22

Event Indications from FM2 FMB_FM2_EVENT 19 24

System fatal error indication FMB_EXCEPTION 28 27

System halt and restart FMB_EXIT 21 26
 FMB_RESET 20 25

Basic Management

User Manual Page: 5

Notes on Data Structures and Parameters

The FMB-specific types and constants are defined in the include file PB_FMB.H.

All words, long-words, strings, arrays and records begin on even addresses. To accomplish this, fill bytes
had to be added in some places. These are always recognizable by their name dummy.

Data blocks do not contain pointers. If a data block contains one or more fields or lists of variable length,
then the length information of all variable-length fields is stored in the constant part. The fields of variable
length follow on the constant part.

Here is an example of such a data block:

constant parameters

field length

variable field

The variable data fields are shown between comment delimiters in the include file PB_FMB.H to show their
position and structure, without forcing the programmer to use data structures of a specific length.
Nevertheless, the data must be entered at exactly this spot.

The service description block contains a result parameter. If a function returns as positive (result = POS) the
service-specific confirmation block will be passed. If the result is negative (result = NEG), then the error
structure T_ERROR or a service-specific error structure is passed.

For negative confirmations a standard error structure T_ERROR is used. The error codes are not noted
explicitly for each service. The standard error structure and the error codes are described in Appendix A.

PROFIBUS Application Program Interface

Page: 6 PROFIBUS

3 FMB SERVICES

3.1 FMB-Set-Configuration

This service is used to configure the PROFIBUS protocol stack. In the service request the PROFIBUS user
specifies which protocol components are active and what is the available memory for the active protocol
components.

The FMB-Set-Configuration service must be executed directly after initialization of the protocol stack. It is not
allowed to excute any other service prior to the configuration service. If the PROFIBUS user starts with any
other service (e.g. FM7-Set-Busparameter), FMB assumes a standard configuration. In this standard
configuration only FAL is active.

Any attempt to execute the FMB-Set-Configuration service after another service and any attempt to execute
this service a second time is confirmed with a negative result.

Service-Description-Block for Request:

USIGN16 comm_ref 0
USIGN8 layer FMB
USIGN8 service FMB_SET_CONFIGURATION
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data block for Request:

Data structure T_FMB_SET_CONFIGURATION_REQ
PB_BOOL fms_active FMS- and FM7-Services usable
PB_BOOL dp_active DP-Services are usable
PB_BOOL fdlif_active FDLIF-Services are usable
PB_BOOL sm7_active reserved
USIGN16 fdl_evt_receiver receiver of FM2 events is FMB_USR,
 FM7_USR,DP_USR or FDLIF_USR (1)
USIGN16 data_buffer_length max. size of PDU buffer
T_FMB_CONFIG_VFD vfd VFD configuration parameters (FMS)
T_FMB_CONFIG_CRL crl CRL configuration parameters (FM7)
T_FMB_CONFIG_DP dp DP configuration parameters
T_FMB_CONFIG_FDLIF fdlif FDLIF configuration parameters
T_FMB_CONFIG_SM7 sm7 reserved

(1) In future releases of SOFTING's PROFIBUS API, only the receiver FMB_USR will be supported. Other receivers are supported only
for compability with former releases of PROFIBUS API. In new applications always set FMB_USR.

Basic Management

User Manual Page: 7

VFD-Configuration Data structure T_FMB_CONFIG_VFD

USIGN16 max_no_vfds max, number of VFD´s (1 .. MAX_VFD)
USIGN16 max_no_obj_descr max. number of OD object descriptions (1)
USIGN8 max_obj_name_length max. size of OD object name
USIGN8 max_obj_ext_length max. size of OD obect extension

CRL-Configuration Data structure T_FMB_CONFIG_CRL

USIGN16 max_no_fal_sdbs max. number of FAL service description blocks
USIGN16 max_no_fdl_sdbs max. number of FDL servcie description blocks
USIGN16 max_no_data_buffer max. number of PDU buffers
USIGN16 max_no_api_buffer max number of abort/poll/idle PDU buffers
USIGN16 max_no_poll_entries max number of poll list entries
USIGN16 max_no_subscr_entries reserved
PB_BOOL resrc_check with resource check (1)
USIGN8 max_no_parallel_req max number of parallel services to send (1)
USIGN8 max_no_parallel_ind max number of parallel services to receive (1)
USIGN8 dummy alignment byte

DP-Configuration Data structure T_FMB_CONFIG_DP

USIGN8 max_number_slaves maximum number of supported DP Slaves
USIGN8 max_slave_output_len max. length of slave output data per DP Slave
USIGN8 max_slave_input_len max. length of slave input data per DP Slave
USIGN8 max_slave_diag_len max. length of one diagnostic buffer entry
USIGN16 max_slave_diag_entries max. number entries in circular diagnostic buffer
USIGN16 max_bus_para_len max. length of DP Master bus parameter set
USIGN16 max_slave_para_len max. length of one DP Slave parameter set

FDLIF-Configuration Data structure T_FMB_CONFIG_FDLIF

USIGN8 send_req_credits max number od send credits for SDA and SDN services
USIGN8 srd_req_credits max number of send credits for SRD services
USIGN8 receive_credits max number of receive credits
USIGN8 max_no_resp_saps max number of responder saps

SM7-Configuration Data structure T_FMB_CONFIG_SM7 (1)

USIGN16 reserved reserved for future use

(1) for future use

PROFIBUS Application Program Interface

Page: 8 PROFIBUS

Notes on the data structures of the FMB-Set-Configuration service:

T_FMB_SET_CONFIGURATION_REQ

With the configuration flags fms_active, dp_active and fdlif_active the PROFIBUS user specifies which
protocol components are active.

With the flag fdl_evt_receiver the user decides which user layer will receive FM2 events. (FM2 is the
management instance of FDL). The user can select FMB_USR, FM7_USR, DP_USR or FDLIF_USR as
event receiver. Only a subset of layer identifiers may be valid if not all configuration flags are set to
PB_TRUE. The following table shows which layer identifiers are valid in depending on the configuration
flags.

configuration flag valid layer identifier

fms_active = PB_TRUE FMB_USR, FM7_USR
dp_active = PB_TRUE: FMB_USR, DP_USR
fdlif_active = PB_TRUE FMB_USR, FDLIF_USR
sm7_active = PB_FALSE for internal use

The component data_buffer_length describes the length of buffer that are used for sending messages to
remote stations and for receiving messages from remote stations. If you are not sure what buffer length your
application needs, set the value 0xFF for this component.

It depends on the configuration flags which substructures of T_FMB_CONFIGURATION_REQ are of
significance. The following table shows what substructures have to be filled in depending on the
configuration flags:

configuration flag substructures that has to be filled

fms_active = PB_TRUE: T_FMB_CONFIG_VFD and T_FMB_CONFIG_CRL
dp_active = PB_TRUE: T_FMB_CONFIG_DP
fdlif_active = PB_TRUE: T_FMB_CONFIG_FDLIF

T_FMB_CONFIG_CRL

The FMS user has to specify the memory requirements for a CRL in terms of max_no_fal_sdbs,
max_no_fdl_sdbs, etc. The user can get proper values for this components in two ways. The first way is to
calculate the memory requirements for a CRL by means of the formulars that are given in chapter 4. A more
comfortable way to find out the memory requirements is offered by the User Toolkit. The Toolkit provides C-
functions that do low level checks on a CRL and calculate the memory requirements. For detailed
information see the manual of the User Toolkit.

Basic Management

User Manual Page: 9

T_FMB_CONFIG_DP

By means of this data structure the user application is allowed to determine the maximum memory require-
ments for the DP protocol stack. Once these values have been defined the internal DP configuration (e.g.
number of loaded DP Slaves) may be changed dynamically within these maximum limits.

Note, some parameters are allowed to be set to zero. This is possible because a DP Master can be used as
individual configuration device (DP Master class2). In this case the memory for the slave handling can be
preserved.

The parameters have the following meanings and ranges:

max_number_slaves (0..DP_MAX_NUMBER_STATIONS / 0..127)

- defines the maximum number of DP Slaves which the DP Master is able to manage

- the real number of used (i.e. downloaded) DP Slaves may differ between zero and max_number_slaves
during a DP session

max_slave_input_len / max_slave_output_len (Even USIGN16)

- defines the maximum number of bytes that one DP Slave may use for input / output values within the
shared memory (between the DP User application and the DP protocol software)

- since the DP protocol software supports different ways of administering the shared I / O memory (see
Address Assignment Modes in the DP documentation) these parameters determine the size of the
whole I / O memory: size = max_number_slave * (max_slave_input_len + max_slave_output_len)

- both values must be even values because the starting offset for a DP Slave I / O area must be aligned
(in Address Assignment Mode ARRAY)

max_slave_diag_entries (max_number_slaves..65535)

- determines the maximum number of diagnostic elements which the DP Master stores in a circular buffer

- if more than max_slave_diag_entries messages are available at a certain time the oldest diagnostic
element will be lost (recommended are at least 2 buffers per DP Slave)

max_slave_diag_len (DP_MIN_SLAVE_DIAG_LEN..DP_MAX_SLAVE_DIAG_DATA_LEN / 6..244)

- defines the maximum size in bytes of each diagnostic element that is used in the circular buffer

max_bus_para_len (DP_MIN_BUS_PARA_LEN..USIGN16 / 66..65535)

- determines the maximum length for the DP bus parameter set including all master_user_data

- this area is accessed via area_code = 127 during DP_Download services

PROFIBUS Application Program Interface

Page: 10 PROFIBUS

max_slave_para_len (DP_MIN_SLAVE_PARA_LEN..USIGN16 / 32..65535)

- determines the maximum length for the DP Slave parameter sets

- this area is accessed via area_code = 0..DP_DEFAULT_SLAVE_ADDRESS (126) during DP_Down-
load services

Notes on data structure T_FMB_CONFIG_FDLIF

In the substructure T_FMB_CONFIG_FDLIF the user configures the number of resources that are available
for FDLIF service calls.

The component send_req_credits specifies the maximum number of parallel SDA and/or SDN service
executions. If, for example, the send_req_credits are five, the FDLIF user can issue five SDA- or SDN-
requests without waiting for a SDA- or SDN-confirmation. If the user exceeds his credits the PROFIBUS
send function returns with negative result (error code: E_IF_SERVICE_CONSTR_CONFLICT).

The component srd_req_credits specifies the maximum number of parallel SRD-execution.

The component receive_credits specifies the number of resources that are available for receiving PDUs from
remote stations. The receive resources are shared among the FDL SAPs. When activating a SAP the FDLIF
user specifies how many receive resources belong to the SAP (component credits in
T_FDLIF_ACTIVATE_SAP_REQ). The sum of credits given to all SAPs must not exceed receive_credits
specified in the configuration service.

The component max_no_resp_saps specifies the number of FDL Responder SAPs (FDL RSAPs) that may
be activated by the FDLIF user.

Basic Management

User Manual Page: 11

Service-Description-Block for Confirmation:

USIGN16 comm_ref 0
USIGN8 layer FMB_USR
USIGN8 service FMB_SET_CONFIGURATION
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS / NEG

Data block for Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_ERROR standard error structure

PROFIBUS Application Program Interface

Page: 12 PROFIBUS

3.2 FMB-Set-Value Services

The PROFIBUS API provides two services to set the FDL operational parameters:

- FMB-Set-Busparameters

- FMB-Set-Value-Loc

Basic Management

User Manual Page: 13

3.2.1 FMB-Set-Busparameter

This service is used to set all FDL operational parameters that are necessary to start FDL. This set of
operational parameters is designated FDL bus parameters.

The FMB-Set-Busparameter service is similar to the services FM7-Set-Busparameter and DP-Download-
Loc. Which service the PROFIBUS user has to execute depends on the operation mode which was specified
in the FMB-Set-Configuration request. If a mixed operation mode has been chosen, e.g. FMS and DP have
been activated, the FDL bus parameters must be set by the FMB-Set-Busparameter service. If FMS or DP
should run in stand alone mode, the FDL Bus Parameters can be set by the FM7-Set-Busparameter service
or DP-Download-Loc service respectively.

Note, that the DP protocol stack has some more DP specific parameters within the bus parameter set (e.g
poll_timeout, min_slave_intervall, etc.). In case of mixed operation the FMB-Set-Busparameter service sets
the DP specific parameters with default values (see chapter 4.2.5). To change these values use the DP-Set-
Busparameter service (see manual DP Services chapter 4.3.9).

The FMB-Set-Busparameter service must be started immediately after the execution of the FMB-Set-
Configuration service.

Service-Description-Block for Request:

USIGN16 comm_ref 0
USIGN8 layer FMB
USIGN8 service FMB_SET_BUSPARAMETER
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data block for Request:

Data structure T_FMB_SET_BUSPARAMETER_REQ

USIGN8 loc_add local station address
USIGN8 loc_segm local segment
USIGN8 baud_rate baud rate
USIGN8 medium_red medium redundancy
USIGN16 tsl slot time
USIGN16 min_tsdr min. station delay time resp.
USIGN16 max_tsdr max. station delay time resp.
USIGN8 tqui quiet time
USIGN8 tset setup time
USIGN32 ttr target token rotation time
USIGN8 g gap update factor
PB_BOOL in_ring_desired active or passive station
USIGN8 hsa highest station address in ring
USIGN8 max_retry_limit max. retry limit in case of transmit error

The valid values of the FDL operational parameters are explained in detail in chapter 4.2 "FDL Bus
Parameters".

PROFIBUS Application Program Interface

Page: 14 PROFIBUS

Service-Description-Block for Confirmation:

USIGN16 comm_ref 0
USIGN8 layer FMB_USR
USIGN8 service FMB_SET_BUSPARAMETER
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS / NEG

Data block for Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_ERROR standard error structure

Basic Management

User Manual Page: 15

3.2.2 FMB-Set-Value

The Set-Value-Loc service is used to set a single FDL operational parameter.

Service-Description-Block for Request:

USIGN16 comm_ref 0
USIGN8 layer FMB
USIGN8 service FMB_SET_VALUE
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data block for Request:

Data structure T_FMB_SET_VALUE_REQ

USIGN8 id value identifier
USIGN8 length length of value field
USIGN8 value[length] value

Parameter identifiers:

FDL-operational parameters which can be changed:

ID_BAUD_RATE 2 Baud rate
ID_TSL 6 Slot-Time
ID_MIN_TSDR 7 Minimum Station Delay Time
ID_MAX_TSDR 8 Maximum Station Delay Time
ID_TQUI 9 Time out
ID_TSET 10 Setup Time
ID_TTR 11 Target Rotation Time
ID_G 12 GAP-Update-Factor
ID_MAX_RETRY_LIMIT 15 Max. # of repetitions in case of transmit error

The valid values of the FDL operational parameters are explained in detail in chapter 4.2 "FDL Bus
Parameters".

Service-Description-Block for Confirmation:

USIGN16 comm_ref 0
USIGN8 layer FMB_USR
USIGN8 service FMB_SET_VALUE
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS / NEG

Data block for Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_ERROR standard error structure

PROFIBUS Application Program Interface

Page: 16 PROFIBUS

3.3 FMB-Read-Value Services

The PROFIBUS API offers two services to read the FDL operational parameters:

- FMB-Read-Busparameters

- FMB-Read-Value

Basic Management

User Manual Page: 17

3.3.1 FMB-Read-Busparameter

The FMB-Read-Busparameters service is used to read the FDL bus parameters.

Service-Description-Block for Request:

USIGN16 comm_ref 0
USIGN8 layer FMB
USIGN8 service FMB_READ_BUSPARAMETER
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data block for Request:
n/a

Service-Description-Block for Confirmation:
USIGN16 comm_ref 0
USIGN8 layer FMB_USR
USIGN8 service FMB_READ_BUSPARAMETER
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS / NEG

Data block for Confirmation:

result = POS:

Data structure T_FMB_READ_BUSPARAMETER_CNF

USIGN8 loc_add local station address
USIGN8 loc_segm local segment
USIGN8 baud_rate baud rate
USIGN8 medium_red medium redundancy
USIGN16 tsl slot time
USIGN16 min_tsdr min. station delay time resp.
USIGN16 max_tsdr max. station delay time resp.
USIGN8 tqui quiet time
USIGN8 tset setup time
USIGN32 ttr target token rotation time
USIGN8 g gap update factor
PB_BOOL in_ring_desired active or passive station
USIGN8 hsa highest station address
USIGN8 max_retry_limit max. retry limit
USIGN16 reserved not used
USIGN8 ident[202] FDL ident string

result = NEG:

Data structure T_ERROR standard error structure

The read values of the FDL operational parameters are explained in detail in chapter 4.2 "FDL Bus
Parameters".

PROFIBUS Application Program Interface

Page: 18 PROFIBUS

3.3.2 FMB-Read-Value

The FMB-Read-Value-Loc service enables the PROFIBUS user to read aa single FDL operational
parameter.

Service-Description-Block for Request:

USIGN16 comm_ref 0
USIGN8 layer FMB
USIGN8 service FMB_READ_VALUE
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data block for Request:

Data structure T_FMB_READ_VALUE_REQ

USIGN8 id value identifier
USIGN8 dummy alignment byte

Parameter identifiers:

FDL operational parameters:

ID_TS 1 Station address
ID_BAUD_RATE 2 Baudrate
ID_MEDIUM_RED 3 Redundancy
ID_HW_RELEASE 4 Hardware release
ID_SW_RELEASE 5 Software release
ID_TSL 6 Slot-Time
ID_MIN_TSDR 7 Minimum Station Delay Time
ID_MAX_TSDR 8 Maximum Station Delay Time
ID_TQUI 9 Time out
ID_TSET 10 Setup Time
ID_TTR 11 Target Rotation Time
ID_G 12 GAP-Update-Factor
ID_IN_RING_DESIRED 13 in ring desired
ID_HSA 14 Highest station address in local segment
ID_MAX_RETRY_LIMIT 15 Max. # of repetitions in case of transmit error
ID_LAS 17 List of active stations (LAS) (1)

(1) LAS is available only for active stations (in_ring_desired==PB_TRUE)

The read values of the FDL operational parameters are explained in detail in chapter 4.2 "FDL Bus
Parameters".

Basic Management

User Manual Page: 19

Service-Description-Block for Confirmation:
USIGN16 comm_ref 0
USIGN8 layer FMB_USR
USIGN8 service FMB_READ_VALUE
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS / NEG

Data block for Confirmation:

result = POS:

Data structure T_FMB_READ_VALUE_CNF

USIGN8 id value identifier
USIGN8 length length of value field
USIGN8 value[length] value

result = NEG:

Data structure T_ERROR standard error structure

LAS coding:

length 1..126 number of active stations
value[0] 0..126 1st station address
value[1] 0..126 2nd station address

value[n] 0..126 last station address

PROFIBUS Application Program Interface

Page: 20 PROFIBUS

3.4 FMB-LSAP-Status

The FMB-LSAP-Status service is used to request the configuration of a local FDL Service Access Point
(SAP).

Service-Description-Block for Request:

USIGN16 comm_ref 0
USIGN8 layer FMB
USIGN8 service FMB_LSAP_STATUS
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data block for Request:

Data structure T_FMB_LSAP_STATUS_REQ

USIGN8 lsap local sap
USIGN8 dummy alignment byte

Service-Description-Block for Confirmation:

USIGN16 comm_ref 0
USIGN8 layer FMB_USR
USIGN8 service FMB_LSAP_STATUS
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS / NEG

Data block for Confirmation:

result = POS:

Data structure T_FMB_LSAP_STATUS_CNF

USIGN8 access station address
USIGN8 addr_extension segment number
USIGN8 sda SDA service
USIGN8 sdn SDN service
USIGN8 srd SRD service
USIGN8 csrd CSRD service

result = NEG:

Data structure T_ERROR standard error structure

Basic Management

User Manual Page: 21

Service coding:

Each service field (sda, sdn, srd, csrd) contains the arithmetic sum of the parameters "service" and the
"role_in_service":

service:

SDA_RESERVED 0x00 SDA service
SDN_RESERVED 0x01 SDN service
SRD_RESERVED 0x03 SRD service
CSRD_RESERVED 0x05 CSRD service

role_in_service:

INITIATOR 0x00 initiator role
RESPONDER 0x10 responder role
BOTH_ROLES 0x20 initiator / responder
SERVICE_NOT_ACTIVATED 0x30 service not activated

PROFIBUS Application Program Interface

Page: 22 PROFIBUS

3.5 FMB-Get-Live-List

This service provides the FMB user with an up-to-date list of all stations that are functional on the bus. The
service is not available for passive stations.

Service-Description-Block for Request:

USIGN16 comm_ref 0
USIGN8 layer FMB
USIGN8 service FMB_GET_LIVE_LIST
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data block for Request:

n/a

Service-Description-Block for Confirmation:

USIGN16 comm_ref 0
USIGN8 layer FMB_USR
USIGN8 service FMB_GET_LIVE_LIST
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS / NEG

Data block for Confirmation:

result = POS:

Data structure T_FMB_GET_LIVE_LIST_CNF

USIGN8 dummy alignment byte
USIGN8 no_of_elements number of life list elements
T_FMB_LIVE_LIST live_list[no_of_elements] live list

result = NEG:

T_ERROR error standard error structure

Basic Management

User Manual Page: 23

Data structure T_FMB_LIVE_LIST

USIGN8 station station address (0..126)
USIGN8 status current status of station

Stati:

PASSIVE 0x00 passive station
ACTIVE_NOT_READY 0x01 active station, not ready
ACTIVE_READY 0x02 active station, ready to enter ring
ACTIVE_IN_RING 0x03 active station in ring

PROFIBUS Application Program Interface

Page: 24 PROFIBUS

3.6 FMB-FM2-Event

With the FMB-FM2-EVENT service, the FMB indicates FM2 events to the PROFIBUS user.

In the FMB-SET-CONFIGURATION service the PROFIBUS user selects the instance that receives the FM2
events. If in the FMB-SET-CONFIGURATION request the flag fdl_evt_receiver was set to FMB_USR, the
FM2 events are indicated as FMB-FM2-Events.

Service-Description-Block for die Indication:

USIGN16 comm_ref 0
USIGN8 layer FMB_USER
USIGN8 service FMB_FM2_EVENT
USIGN8 primitive IND
INT8 invoke_id not used
INT16 result not used

Data Block:

Data structure T_FMB_FM2_EVENT_IND

USIGN16 reason event reason

FM2 event reason codes:

FM2_FAULT_ADDRESS 1 duplicate address recognized
FM2_FAULT_PHY 2 physical layer is malfunctioning (1)
FM2_FAULT_TTO 3 timeout on bus detected
FM2_FAULT_SYN 4 no receiver synchronization
FM2_FAULT_OUT_OF_RING 5 local station out of ring
FM2_GAP_EVENT 6 GAP area has changed (1)

(1) Not supported by ASPC2

Additional FM2 event reason codes (Error messages from ASPC2)

FM2_MAC_ERROR 19 fatal MAC error
FM2_HW_ERROR 20 fatal HW error

Basic Management

User Manual Page: 25

3.7 FMB-Reset

The FMB-Reset service is used to reset the whole communication software (FAL, DP, FDLIF and FDL).

Service-Description-Block for Request:

USIGN16 comm_ref 0
USIGN8 layer FMB
USIGN8 service FMB_RESET
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data block for Request:

n/a

Service-Description-Block for Confirmation:

USIGN16 comm_ref 0
USIGN8 layer FMB_USR
USIGN8 service FMB_RESET
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS / NEG

Data block for Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_ERROR standard error structure

Note:

In future releases of SOFTING's PROFIBUS API, the service FMB-Reset will not be supported. The service
is provided only for compability with former releases of PROFIBUS API. In new applications, use FMB-Exit
instead of FMB-Reset.

PROFIBUS Application Program Interface

Page: 26 PROFIBUS

3.8 FMB-Exit

This service terminates the PROFIBUS communication software (FAL, DP, FDLIF and FDL).

Service-Description-Block for Request:

USIGN16 comm_ref 0
USIGN8 layer FMB
USIGN8 service FMB_EXIT
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data block for Request:

n/a

Service-Description-Block for Confirmation:

USIGN16 comm_ref 0
USIGN8 layer FMB_USR
USIGN8 service FMB_EXIT
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS / NEG

Data block for Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_ERROR standard error structure

Basic Management

User Manual Page: 27

3.9 FMB-Exception

A FMB-Exception indicates a fatal system error.

If a fatal system error occurs, please contact SOFTING for analysing the exception parameters.

Service-Description-Block for Indication:

USIGN16 comm_ref 0
USIGN8 layer FMB_USR
USIGN8 service FMB_EXCEPTION
USIGN8 primitive IND
INT8 invoke_id 0
INT16 result POS

Data block for Indication:

Data structure T_EXCEPTION

USIGN8 task_id task in wich the fatal system error is occurred
USIGN8 par1 exception parameter 1
USIGN16 par2 exception parameter 2
USIGN16 par3 exception parameter 2

PROFIBUS Application Program Interface

Page: 28 PROFIBUS

4 CONFIGURATION PARAMETERS

4.1 FMB Configuration

The FMB-Set-Configuration service determines the size of RAM that is dynamically allocated by the
PROFIBUS protocol stack. The following chapter gives an overview of the memory requirements for FAL,
DP and FDLIF. The following formulas calculate net sizes - the management overhead of the operating
system is not considered.

4.1.1 VFD Configuration

Memory requirements for VFDs:

The component vfd.max_no_vfds in the FMB-SET-CONFIGURATION request specifies the number of VFDs
that are supported by FAL. The memory requirement for one VFD is:

 (76 + 3*VFD_STRING_LENGTH(1)) bytes

(1) The constant VFD_STRING_LENGTH is defined in include file PB_CONF.H. It is not changeable by

the user!

Memory requirements for Object Dictionaries:

Memory to store communication objects is allocated while loading the Object Dictionary (OD). At creation
time of the OD header the total size of the Object Dictionary is calculated and the memory for the Object
Descriptions is allocated.

Memory requirements for one Object Description:

 (18 + od_obj_descr.length(2) + vfd.max_obj_ext_length(3)) bytes

(2) The name length of a Object Description is fixed by loading the OD header (see FMS manual).

(3) The extension length of a Object Description is fixed by the configuration parameter

vfd.max_obj_ext_length (see FMB_SET_CONFIGURATION service).

Basic Management

User Manual Page: 29

4.1.2 CRL Configuration

The memory requirements of a CRL depends on the number of CRL entries, the connection types, the
number of parallel services, etc. Below you will find formulas to calculate the memory requirements for a
Communication Relationship (CR) in dependence on connection type, parallel services, etc.

The CRL handles with several buffer types. There are Fieldbus Application Layer Service Description Blocks
(FAL-SDBs), Fieldbus Data link Layer Service Description Blocks (FDL-SDBs), PDU buffer (Data-Blocks),
Abort/Poll/Idle-buffer (API-Blocks) and Poll-List-Entries. The sizes of the buffers are as follows

 FAL-SDB 42 bytes
 FDL-SDB 36 bytes
 Data-Block 50 to 255 bytes
 API-Data-Block 30 bytes
 Poll-List-Entry 18 bytes

The formulas contain some abbreviations with the following meaning:

 scc Send confirmed request counter in CRL entry
 sac Send acknowledge request counter in CRL entry
 rcc Receive confirmeed request counter in CRL entry
 rac Receive acknowledge requrest counter in CRL entry
 ci Control interval in CRL entry
 mult Multiplier in CRL entry

4.1.2.1 Buffers for a Master-Master CR

The connection type of a Master-Master CR is MMAC. The following formulas are used to calculate the
buffer requirements for one Master-Master CR:

Number of FAL-SDBs: max(1,scc+sac) + max(1,rcc+rac) + min(ci,1) + 3
Number of FDL-SDBs: 2*max(1,scc+sac) + max(1,rcc+rac) + 2*min(ci,1) + 4
Number of Data-Blocks: 2*max(1,scc+sac) + max(1,rcc+rac) + min(ci,1) + 2
Number of API-Blocks: min(ci,1) + 1

By using the connection attribute I_CONN for Master-Master CRs the buffer requirements can be reduced.

With this connection attribute the user can build groups of connections where all members of a group use
the same FDL SAP (see component loc_lsap the static part of the CRL entry). It is possible to build such a
group on condition that only one member of the group is in data transfer phase at one point in time and all
members act as initiate requester. Within an I_CONN-group, the resources are shared.

PROFIBUS Application Program Interface

Page: 30 PROFIBUS

An example: Let say, there are three master/master connections with connection attribut I_CONN, all using
the same FDL SAP. The connections may have the following demand for resources:

 FAL-SDBs FDL-SDBs Data-Blocks API-Blocks
Connection A 10 15 13 2
Connection B 12 17 15 2
Connection C 8 11 10 1

The demand of resources for the group is built as maximum of each column. So, for this example the result
is:

 FAL-SDBs FDL-SDBs Data-Blocks API-Blocks
Group 12 17 15 2

4.1.2.2 Buffers for Masters in Master-Slave CRs

Master-Slave CRs have the connection type MSAC, MSAC_SI, MSCY or MSCY_SI. The component
loc_lsap in the static part of the CRL entry determines the role the station plays in that CR. If loc_lsap is
equal to poll_sap (poll_sap is member of the CRL header), the station acts as Master otherwise it acts as
Slave.

Buffers for a Master in an acyclic Master-Slave CR (connection type MSAC and MSAC_SI)

Number of FAL-SDBs: max(1,scc+sac) + rac + min(1,ci) + 3

Number of FDL-SDBs: sac + rac + 1
Number of Data-Blocks: max(1,scc+sac) + sac + rac + 3

Number of API-Blocks: rac + min(1,ci) + 2
Number of Poll-List-Entries: 1

Buffers for a Master in a cyclic Master-Slave CR (connection type MSCY and MSCY_SI)

Number of FAL-SDBs: sac + rac + 4 (*)

Number of FDL-SDBs: sac + rac + max(1,mult) (*)
Number of Data-Blocks: 2*sac + rac + max(1,mult) + 4 (*)

Number of API-Blocks: rac + max(1,mult) + 1
Number of Poll-List-Entries: max(1,mult)

(*) For the first Master-Slave CR in the CRL the FDL-SDB resources have to be incremented by 1. This

resource is used for the poll_sap.

(*) If, in the static part of a CRL entry in the component 'conn_type' the LLI event bit is set, the FAL- and

DATA resources have to be incremented by 1.

Basic Management

User Manual Page: 31

4.1.2.3 Buffers for Slaves in Master-Slave CRs

Master-Slave CRs have the connection type MSAC, MSAC_SI, MSCY or MSCY_SI. The component
loc_lsap in the static part of the CRL entry determines the role the station plays in that CR. If loc_lsap is not
equal to poll_sap (poll_sap is member of the CRL header), the station acts as Slave otherwise it acts as
Master.

Buffers for a Slave in an acyclic Master-Slave CR (connection type MSAC and MSAC_SI)

Number of FAL-SDBs: sac + max(1,rcc+rac) + min(1,ci) + 3
Number of FDL-SDBs: 2*sac + max(1,rcc+rac) + 2*min(1,ci) + 7
Number of Data-Blocks: 2*sac + max(1,rcc+rac) + 2*min(1,ci) + 6

Buffers requirements for a Slave in a cyclic Master-Slave CR (connection type MSCY and MSCY_SI)

Number of FAL-SDBs: sac + rac + 4
Number of FDL-SDBs: 2*sac + rac + 8
Number of Data-Blocks: 2*sac + rac + 8

4.1.2.4 Buffers for connectionless CRs

Connectionless CRs have the connection type MULT or BRCT. The component rem_add in the static part of
the CRL entry determines the role the station plays in that CR. If rem_add is equal to 127 the station acts as
Sender otherwise it acts as Receiver.

Buffer requirements for multicast/broadcast Sender

Number of FAL-SDBs: max(1,sac)
Number of FDL-SDBs: max(1,sac) + 1
Number of Data-Blocks: max(1,sac)

Buffer requirements for the multicast/broadcast Receiver

Number of FAL-SDBs: max(1,rac)
Number of FDL-SDBs: max(1,rac) + 1
Number of Data-Blocks: max(1,rac)

PROFIBUS Application Program Interface

Page: 32 PROFIBUS

4.1.3 DP Configuration

The DP protocol software uses a definable size of memory that is not changeable after issuing the FMB-Set-
Configuration service. Afterwards this static amount of memory blocks is distributed "dynamically" during a
DP session (e.g. adding and deleting of DP Slaves, etc.).

The amount of memory that is used by the DP protocol software can be calculated as follows:

Memory Type Block Size (Bytes) Number Blocks

bus parameter set T_FMB_CONFIG_DP::max_bus_para_len 2

slave parameter set T_FMB_CONFIG_DP::max_slave_para_len T_FMB_CONFIG_DP::
max_number_slaves + 1

circular diagnostic
buffer

T_FMB_CONFIG_DP::max_slave_diag_len T_FMB_CONFIG_DP::
max_slave_diag_entries

I/O data memory
(beside DPRAM)

T_FMB_CONFIG_DP::max_slave_input_len +
T_FMB_CONFIG_DP::max_slave_output_len

1 if
T_FMB_CONFIG_DP::
max_number_slaves

internal DP memory 34 T_FMB_CONFIG_DP::
max_number_slaves + 6

4.1.4 FDLIF Configuration

FDLIF uses FDL-SDBs and Data-Blocks (see CRL configuration). The following table gives an overview of
the relation between FDLIF credits and buffer requirements:

One credit occupies FDL-SDB occupies Data-Block(s)
SDA/SDN credit 1 1
SRD credit 1 2
receive credit 1 1
FDL RSAP 1 0

Basic Management

User Manual Page: 33

4.1.5 Standard Configuration

If the PROFIBUS user starts with any other service (e.g. FMB-Set-Busparameter), FMB assumes a standard
configuration. In this standard configuration only FAL is active.

The following table shows the values of the standard configuration for PROFIboard and PROFIcard
controller:

Configuration Parameters PROFIBUS Controller Description
 PROFIboard

PROFI104
PROFIcard

VFD-Configuration
max_no_vfds 5 5 max, number of VFD´s
max_no_obj_descr 823 823 max. number of OD object descriptions
max_obj_name_length 32 32 max. size of OD object name
max_obj_ext_length 32 32 max. size of OD obect extension

CRL-Configuration
max_no_fal_sdbs 390 200 max. number of FAL service description

blocks
max_no_fdl_sdbs 580 230 max. number of FDL servcie description

blocks
max_no_data_buffer 440 230 max. number of PDU buffers
max_no_api_buffer 100 50 max number of abort/poll/idle PDU buffers
max_no_poll_entries 48 48 max number of poll list entries
max_no_subscr_entries 0 0 reserved

PROFIBUS Application Program Interface

Page: 34 PROFIBUS

4.2 FDL Bus Parameters

4.2.1 Range of Values

The following figure lists all Bus Parameters with their definition and the range of value.

PARAMETER RANGE OF VALUE DESCRIPTION
loc_add 0 .. 126 local station address
loc_segm 0 .. 63

255
local segment address
no segment address

baud_rate 0
1
11
2
3
4
6
7
8
9

9.6 Kbit/s
19.2 Kbit/s
45.45 Kbit/s
93.75 Kbit/s
187.5 Kbit/s
500 Kbit/s
1.5 Mbit/s
3 Mbit/s
6 Mbit/s
12 Mbit/s

medium_red 0 no bus redundany
tsl 37 .. 16383 slot time
min_tsdr 11 .. 1023 min. station delay time
max_tsdr 37 .. 216-1 max station delay time
tqui 0 .. 493 quiet time
tset 1 .. 494 - tqui setup time
ttr 256 .. 224-1 target rotation time
g 1 .. 100 gap update factor
in_ring_desired 0

255
passive station
active station

hsa 1 .. 126 highest station address
max_retry_limit 0 .. 7 max retry limit

Basic Management

User Manual Page: 35

Description of the bus parameters in detail:

loc_add local station address

0 .. 126 This parameter defines the local station address.

baud_rate baud rate

0 9,6 Kbit/s

1 19,2 Kbit/s

11 45,45 Kbit/s

2 93,75 Kbit/s

3 187,5 Kbit/s

4 500 Kbit/s

6 1,5 Mbit/s

7 3 Mbit/s

8 6 Mbit/s

9 12 Mbit/s

This parameter defines the baud rate.

medium_red medium redundancy

0 single, no redundancy

tsl slot time

37..16383 [Bit Times]

The slot time is the maximum time a master station must wait for a transaction response.

Note: The selected slot time must always be greater than max_TSDR + TQUI + 11 + 2.

min_tsdr minimum station delay time for responder

11 .. 1023 [Bit Times]

The min_tsdr is the period of time which may elapse before the responder can send the response
frame.

max_tsdr maximum station delay time for responder

37 .. 216-1 [Bit Times]

The responder has to send the response frame before the max_tsdr is elapsed.

PROFIBUS Application Program Interface

Page: 36 PROFIBUS

t_qui quiet time

0 .. 493 [Bit Times]

The quiet time is the period of time which a transmitting station must wait after the end of a frame
before enabling its receiver. It is siginificant when using repeaters.

t_set setup time

1 .. 494 - t_qui [Bit Times]

The setup time is the time between the occurrence of an interrupt request and the necessary request
action is performed.

ttr target rotation time

256 .. 224-1 [Bit Times]

The target rotation time is the anticipated time for one token rotations on the PROFIBUS network,
including allowances for high and low priority transactions and GAP maintenance.

g gap update factor

1 .. 100

This parameter defines the number of token rotations between GAP maintanance
cycles.

in_ring_desired in ring desired

0 passive station

255 active station

This parameter defines whether the station is a active (master) or an passive (slave) station.

hsa highest station address

1 .. 126

This parameter defines the highest station address. The upper limit is determined by the PROFIBUS
protocol. For passive stations the HSA has no significance.

max_retry_limit maximum retry limit

0 .. 7

This parameter max_retry_limit indicates how often FDL has to repeat the request frame when no
response or acknowledgement frame is received from the recognized station within the slot time.

Basic Management

User Manual Page: 37

4.2.2 Recommended Bus Parameters for FMS Operation

For FMS operation the PNO recommends default values for baudrates up to 500 kbit/s. The values up to
12000 kbit/s are recommend by EN 50170 /2 (DP) and by the implementation guides to EN E 50170 / 2
(DP). The default values for 45,45 kbit/s are not defined for single FMS operation.

Parameter/Baudrate 9,6
KBaud

19,2
KBaud

45,45
KBaud

93.75
Kbaud

187,5
KBaud

500
KBaud

1,5
MBaud

3
MBaud

6
MBaud

12
MBaud

TSL
[bit times]

100 200 - 500 1000 2000 3000 400 600 1000

min_TSDR

[bit times]
30 60 - 125 250 500 150 11 11 11

max_TSDR

[bit times]
50 100 - 250 500 1000 980 250 450 800

TSET
[bit times]

5 10 - 15 25 50 240 4 8 16

TQUI
[bit times]

22 22 - 22 22 22 0 3 6 9

G

1 1 - 1 1 1 10 10 10 10

HSA

126 126 - 126 126 126 126 126 126 126

Max_Retry_Limit

1 1 - 1 1 1 1 2 3 4

TTR
[bit times]

10000 15000 - 30000 50000 100000 300000 600000 1200000 2400000

PROFIBUS Application Program Interface

Page: 38 PROFIBUS

4.2.3 Recommended Bus Parameters for FMS Operation using ASPC2

For FMS operation using ASIC ASPC2 use the default values for baudrates up to 12000 kbit/s recommend
by EN 50170 /2 (DP) and by the implementation guides to EN E 50170 / 2 (DP). The default values for 45,45
kbit/s are not defined for single FMS operation.

Parameter/Baudrate 9,6
KBaud

19,2
KBaud

45,45
Kbaud

93.75
Kbaud

187,5
KBaud

500
KBaud

1,5
MBaud

3
MBaud

6
MBaud

12
MBaud

TSL
[bit times]

100 200 - 500 1000 2000 3000 400 600 1000

min_TSDR

[bit times]
30 60 - 125 250 500 150 11 11 11

max_TSDR

[bit times]
50 100 - 250 500 1000 980 250 450 800

TSET
[bit times]

1 1 - 1 1 1 240 4 8 16

TQUI
[bit times]

0 0 - 0 0 0 0 3 6 9

G

1 1 - 1 1 1 10 10 10 10

HSA

126 126 - 126 126 126 126 126 126 126

Max_Retry_Limit

1 1 - 1 1 1 1 2 3 4

TTR
[bit times]

10000 15000 - 30000 50000 100000 300000 600000 1200000 2400000

Basic Management

User Manual Page: 39

4.2.4 Recommended Bus Parameters for DP and FMS Operation

For mixed DP/FMS operation EN 50170/2 (DP) recommends baudrates up to 1500 kbit/s. The values for
baudrated up to 12000 kbit/s are recommend by EN 50170 /2 (DP) and by the implementation guides to EN
E 50170 / 2 (DP).

The baudrate 45,45 kbit/s is only used for DP- and PA -systems with coupling devices.

Parameter/Baudrate 9,6
KBaud

19,2
KBaud

45,45
KBaud

93.75
Kbaud

187,5
KBaud

500
Kbaud

1,5
Mbaud

3
MBaud

6
MBaud

12
MBaud

TSL
[bit times]

125 250 640 600 1500 3500 3000 400 600 1000

min_TSDR

[bit times]
30 60 11 125 250 500 150 11 11 11

max_TSDR

[bit times]
60 120 400 250 500 1000 980 250 450 800

TSET
[bit times]

1 1 95 1 1 1 240 4 8 16

TQUI
[bit times]

0 0 0 0 0 0 0 3 6 9

G

1 1 10 1 1 1 10 10 10 10

HSA

126 126 126 126 126 126 126 126 126 126

Max_Retry_Limit

1 1 1 1 1 1 1 2 3 4

TTR
[Bitzeiten]

- - - - - - - - - -

PROFIBUS Application Program Interface

Page: 40 PROFIBUS

4.2.5 Recommended Bus Parameters for DP Operation

For DP operation EN 50170/2 (DP) recommends baudrates up to 1500 kbit/s. The values up to 12000 kbit/s
are recommend by and by the implementation guides to EN E 50170 / 2 (DP).

The baudrate 45,45 kbit/s is only used for DP- and PA -systems with coupling devices.

Parameter/Baudrate 9,6
KBaud

19,2
KBaud

45,45
KBaud

93.75
Kbaud

187,5
KBaud

500
KBaud

1,5
MBaud

3
MBaud

6
MBaud

12
MBaud

TSL
[bit times]

100 100 640 100 100 200 300 400 600 1000

min_TSDR

[bit times]
11 11 11 11 11 11 11 11 11 11

max_TSDR

[bit times]
60 60 400 60 60 100 150 250 450 800

TSET
[bit times]

1 1 95 1 1 1 1 4 8 16

TQUI
[bit times]

0 0 0 0 0 0 0 3 6 9

G

1 1 10 1 1 1 10 10 10 10

HSA

126 126 126 126 126 126 126 126 126 126

Max_Retry_Limit

1 1 1 1 1 1 1 2 3 4

TTR
[Bitzeiten]

- - - - - - - - - -

DP Busparameter default values:

Parameter Default value Meaning

bp_flag 0x00 bus parameter flag:
error_action = FALSE (autoclear function disabled)

min_slave_interval 1 [100µs] =100µs data exchange cycles of the master as quick as possible

poll_timeout 1000 [1ms] = 1s watchdog timer for Master / Master communication

data_control_time 100 [10ms] = 1s control interval for Global_Control status reports of the DP Master

master_class2_name empty vendor name of the master in Master / Master communication (no
used)

master_user_data_len 32 + 2 = 34 no master_user_data; this field contains the length of the vendor name
and the length field itself

Basic Management

User Manual Page: 41

APPENDIX A

STANDARD ERROR STRUCTURE AND ERROR CODES

For negative confirmations the following standard error structure is used:

Data structure: T_ERROR

USIGN16 class_code error class and error code
INT16 add_detail additional detail
STRINGV add_description[MAX_ERROR_DESCR_LENGTH] additional description

The 16 bit class_code parameter contains the error class in the high byte and the error code in the low byte.

The FMB uses the following codes for negative confirmations. Each pair of error class and error code is
encoded in a constant. The 16 bit component class_code in T_ERROR contains the error class in the high
byte and the error code in the low byte.

 class_ error error Description
 code class code Class Code

E_FMB_RESOURCE_OTHER 0x0200 2 0 Resource Other
E_FMB_RESOURCE_MEM_UNAVAILABLE 0x0201 2 1 Memory-Unavailable

E_FMB_SERV_OTHER 0x0300 3 0 Service Other
E_FMB_SERV_OBJ_STATE_CONFLICT 0x0301 3 1 Object-State-Conflict
E_FMB_SERV_OBJ_CONSTR_CONFLICT 0x0302 3 2 Object-Constraint-Conflict
E_FMB_SERV_PARAM_INCONSIST 0x0303 3 3 Parameter-Inconsistent
E_FMB_SERV_ILLEGAL_PARAM 0x0304 3 4 Illegal-Parameter
E_FMB_SERV_PERM_INTERN_FAULT 0x0305 3 5 Permanent-Internal-Fault

E_FMB_ACCESS_OTHER 0x0500 5 0 Access Other
E_FMB_ACCESS_OBJ_ACC_UNSUP 0x0501 5 1 Object-Access-Unsupported
E_FMB_ACCESS_OBJ_NON_EXIST 0x0502 5 2 Object-Non_Existent
E_FMB_ACCESS_OBJ_ACCESS_DENIED 0x0503 5 3 Object-Access-Denied
E_FMB_ACCESS_HARDWARE_FAULT 0x0504 5 4 Hardware-Fault
E_FMB_ACCESS_TYPE_CONFLICT 0x0505 5 5 Type-Conflict

E_FMB_OTHER 0x0700 7 0 Other Other

E_FMB_CFG_DP_TOO_MANY_SLAVES 0x0901 9 1 Configuration Too many slaves configured
E_FMB_CFG_DP_WRONG_IO_DATA_LEN 0x0902 9 2 I/O data length inconsistent
E_FMB_CFG_DP_IO_ALIGNMENT_ERROR 0x0903 9 3 odd I/O data length detected
E_FMB_CFG_DP_TOO_FEW_DIAG_ENTRIES 0x0904 9 4 not enough diagnostic buffers
E_FMB_CFG_DP_WRONG_DIAG_DATA_LEN 0x0905 9 5 invalid diag buffer length
E_FMB_CFG_DP_WRONG_BUS_PARA_LEN 0x0906 9 6 invalid bus parameter length
E_FMB_CFG_DP_WRONG_SLAVE_PARA_LEN 0x0907 9 7 invalid slave parameter length
E_FMB_CFG_DP_DPRAM_ERROR 0x0908 9 8 DP-RAM error

PROFIBUS Application Program Interface

FMS Services

Version 5.2
Rev. 01

Date: 03-March-1998

Softing AG
Richard-Reitzner-Allee 6
D-85540 Haar
Phone (++49) 89 45 65 6 - 0
Fax (++49) 89 45 65 6 - 399

 Copyright by Softing AG, 1989-2003
All rights reserved.

PROFIBUS User Manual

PROFIBUS Application Program Interface

Copyright Notice

All rights are reserved. No part of these instructions may be reproduced (printed material,
photocopies, microfilm or other method) or processed, copied or distributed using electronic
systems in any form whatsoever without prior written permission of Softing AG.

The producer reserves the right to make changes to the scope of supply as well as changes to
technical data, even without prior notice.

A great deal of attention was made to the quality and functional integrity in designing,
manufacturing and testing the system. However, no liability can be assumed for potential errors
that might exist or for their effects. Should you find errors please inform your distributor of the
nature of the errors and the circumstances under which they occur. We will be responsive to all
reasonable ideas and will follow up on them, taking measures to improve the product if
necessary.

We call your attention to the fact that the company name and trademark as well as product
names are, as a rule, protected by trademark, patent and product brand laws.

Copyright 1989-2003 by Softing AG, Haar

FMS Services

User Manual Page: I

CONTENTS

1 SCOPE ...1

2 OVERVIEW ..2

3 FMS CONTEXT MANAGEMENT SERVICES ...6

3.1 INITIATE..6
3.2 ABORT..8
3.3 REJECT ..11

4 VFD SUPPORT SERVICES...12

4.1 LOCAL SERVICES ...12
4.1.1 Create-VFD..12
4.1.2 VFD-Set-Physical-Status ...14

4.2 REMOTE SERVICES..15
4.2.1 Status ...15
4.2.2 Unsolicited-Status ..16
4.2.3 Identify..17

5 OD MANAGEMENT ...18

5.1 LOCAL SERVICES ...18
5.1.1 Loading an Object Dictionary...18

5.1.1.1 Initiate-Load-OD-LOC...18
5.1.1.2 Load-OD-LOC ..20
5.1.1.3 Terminate-Load-OD-LOC...22

5.1.2 Reading an Object Description..23
5.1.2.1 OD-Read...23

5.2 REMOTE SERVICES..25
5.2.1 Get-OD...25
5.2.2 Put-OD Services ..27

5.2.2.1 Initiate-Put-OD..27
5.2.2.2 Put-OD..29
5.2.2.3 Terminate-Put-OD ..30

5.3 COMMUNICATION OBJECT STRUCTURE ..31
5.3.1 Objects in Local Object Dictionary...31
5.3.2 PROFIBUS Object Description Transfer ...39

PROFIBUS Application Program Interface

Page: II PROFIBUS

6 VARIABLE ACCESS ... 44

6.1 READ.. 44
6.2 WRITE .. 46
6.3 READ-WITH-TYPE... 48
6.4 WRITE-WITH-TYPE... 50
6.5 INFORMATION-REPORT.. 51
6.6 INFORMATION-REPORT-WITH-TYPE... 52
6.7 PHYSICAL-READ... 53
6.8 PHYSICAL-WRITE... 54
6.9 DEFINE-VARIABLE-LIST... 55
6.10 DELETE-VARIABLE-LIST.. 57
6.11 VARIABLE-DATA-EVENT.. 58

7 DOMAIN-MANAGEMENT SERVICES.. 59

7.1 DOWNLOAD SERVICES ... 59
7.1.1 Initiate-Download-Sequence... 59
7.1.2 Download-Segment... 61
7.1.3 Terminate-Download-Sequence ... 62
7.1.4 Request-Domain-Download.. 63

7.2 UPLOAD SERVICES.. 64
7.2.1 Initiate-Upload-Sequence ... 64
7.2.2 Upload-Segment ... 66
7.2.3 Terminate-Upload-Sequence.. 67
7.2.4 Request-Domain-Upload .. 68

7.3 GENERIC-DOWNLOAD SERVICES ... 69
7.3.1 Generic-Initiate-Download-Sequence... 69
7.3.2 Generic-Download-Segment... 71
7.3.3 Generic-Terminate-Download-Sequence ... 72

8 PROGRAM-INVOCATION-MANAGEMENT SERVICES.. 73

8.1 CREATE-PROGRAM-INVOCATION ... 73
8.2 DELETE-PROGRAM-INVOCATION.. 75
8.3 START-PROGRAM-INVOCATION .. 77
8.4 STOP-PROGRAM-INVOCATION .. 78
8.5 RESUME-PROGRAM-INVOCATION .. 79
8.6 RESET-PROGRAM-INVOCATION.. 80
8.7 KILL-PROGRAM-INVOCATION... 81
8.8 PI-SET-STATE-LOC... 82

FMS Services

User Manual Page: III

9 EVENT-MANAGEMENT SERVICES ...84

9.1 EVENT-NOTIFICATION..84
9.2 EVENT-NOTIFICATION-WITH-TYPE ..85
9.3 ACKNOWLEDGE-EVENT-NOTIFICATION..87
9.4 ALTER-EVENT-CONDITION-MONITORING ...88

APPENDIX A ..89

ERROR STRUCTURE AND ERROR CODES...89

INDEX...90

PROFIBUS Application Program Interface

Page: IV PROFIBUS

FMS Services

User Manual Page: 1

1 SCOPE

This manual describes the service-specific parameters and data for local and remote FMS services.

The Fieldbus Message Specification (FMS) services provide remote access to communication objects like
variables, events, Domains and Program Invocations.

FMS is part of the Fieldbus Application Layer (FAL).

Softing's PROFIBUS Application Program Interface provides uniform access to all service groups of the
PROFIBUS protocol. The common access functions are described in the "User Interface" part of the
PROFIBUS User Manual.

This document describes the specific constants and data structures of all FMS services.

The FMS-specific types and constants are defined in the include file PB_FMS.H.

PROFIBUS API

FMB
LLI

remote
FM7local

FM7

FDLIF

FDL

FMS

FAL

FM2

DP /
DP/V1

This document should be read in conjunction with the following parts of the PROFIBUS User Manual:

• "User Interface" (describes the uniform access functions to all PROFIBUS services)

• "Basic Management" (describes the management services common to all protocol components)

• "FM7 Services" (describes the management services which are necessary to configure FAL)

 PROFIBUS Application Program Interface

Page: 2 PROFIBUS

2 OVERVIEW

The Fieldbus Message Specification (FMS) is based on a series of object oriented models that provide
distributed applications with the functionality and services necessary for their implementation in an open,
interoperable environment.

The service descriptions in this manual are grouped according to the FMS models:

Context Management services are used to establish a connection, to release a connection and to reject
improper services.

The Virtual Field Device (VFD) is an abstract model for the description of the data and the behavior of an
automation system as seen by a communication partner. A PROFIBUS device may contain one or more
VFDs. FMS provides services to identify a VFD and to read or report the status of a VFD.

The Object Dictionary (OD) Management provides means to maintain the Object Dictionary, which
contains descriptions of all communication objects.

Variable Access is probably the most commonly used model of FMS, as it provides services to read and
write variable objects like simple variables, records, arrays and variable lists.

A Domain is a part of memory which may contain programs or data. The Domain Management provides
services to download or upload Domains.

The Program Invocation model provides services to link Domains to a program, to start this program, to
stop and delete it. More than one Program Invocation may be created in a device.

The Event Management model offers service to report and acknowledge events.

FMS Services

User Manual Page: 3

FMS Services (in service group order)

Service group Identifier Code Page

Context-Management FMS_INITIATE 0 6
 FMS_ABORT 38 8
 FMS_REJECT 39 11

VFD local FMS_CREATE_VFD_LOC 46 12
 FMS_VFD_SET_PHYS_STATUS_LOC 47 14

VFD remote FMS_STATUS 2 15
 FMS_UNSOLICITEDSTATUS 34 16
 FMS_IDENTIFY 3 17

OD local FMS_INIT_LOAD_OD_LOC 43 18
 FMS_LOAD_OD_LOC 44 20
 FMS_TERM_LOAD_OD_LOC 45 22
 FMS_OD_READ_LOC 42 23

OD remote FMS_INIT_PUT_OD 30 27
 FMS_PUT_OD 31 29
 FMS_TERM_PUT_OD 32 30
 FMS_GET_OD 6 25

Variable service FMS_READ 4 44
 FMS_READ_WITH_TYPE 7 48
 FMS_WRITE 5 46
 FMS_WRITE_WITH_TYPE 8 50
 FMS_INFO_RPT 33 51
 FMS_INFO_RPT_WITH_TYPE 36 52
 FMS_DEF_VAR_LIST 9 55
 FMS_DEL_VAR_LIST 10 57
 FMS_PHYS_READ 28 53
 FMS_PHYS_WRITE 29 54
 FMS_VAR_DATA_EVENT_LOC 49 58

Domain Download FMS_INIT_DOWNL_SEQ 11 59
 FMS_DOWNL_SEG 12 61
 FMS_TERM_DOWNL_SEQ 13 62
 FMS_REQ_DOM_DOWNL 17 63

Generic Domain Download FMS_GEN_INIT_DOWNL_SEQ 61 69
 FMS_GEN_DOWNL_SEG 62 71
 FMS_GEN_TERM_DOWNL_SEQ 63 72

Domain Upload FMS_INIT_UPL_SEQ 14 64
 FMS_UPL_SEG 15 67
 FMS_TERM_UPL_SEQ 16 68
 FMS_REQ_DOM_UPL 18 69

Program Invocation FMS_PI_CREATE 19 73
 FMS_PI_DEL 20 75
 FMS_PI_START 21 77
 FMS_PI_STOP 22 78
 FMS_PI_RESUME 23 79
 FMS_PI_RESET 24 80
 FMS_PI_KILL 25 81
 FMS_PI_SET_STATE_LOC 48 82

Event-Service FMS_EVN_NOTIFY 35 84
 FMS_EVN_NOTIFY_WITH_TYPE 37 85
 FMS_ACK_EVN_NOTIFY 27 87
 FMS_ALT_EVN_CND_MNT 26 88

 PROFIBUS Application Program Interface

Page: 4 PROFIBUS

FMS Services

User Manual Page: 5

Notes on Data Structures and Parameters

The FMS-specific types and constants are defined in the include file PB_FMS.H.

All words, long-words, strings, arrays and records begin on even addresses. To accomplish this, fill bytes
had to be added in some places. They are always recognizable by the name dummy.

Data blocks do not contain pointers. If a data block contains one or more fields or lists of variable length,
then the length information of all variable-length fields is stored in the constant part. The fields of variable
length follow on the constant part.

Here is an example of such a data block:

constant parameters

length of field 1

length of field 2

field 1

field 2

The variable data fields are shown between comment delimiters in the include file PB_FMS.H to show their
position and structure, without forcing the programmer to use data structures of a specific length.
Nevertheless, the data must be entered at exactly this spot.

The request and indication data blocks as well as the response and confirmation data blocks are identical.

The service description block contains a result parameter. If a function returns as positive (result = POS) the
service-specific confirmation block will be passed. If the result is negative (result = NEG), then the standard
error structure T_ERROR or a service-specific error structure is passed. Only the initiate service passes a
confirmation block even when the result of the function is negative.

If a variable should be transferred to a remote station within a variable length field, the variable has to be
given in Motorola format (high order byte first).

For all parameters of data type STRINGV (visible string), byte 0 must contain the length of the character
string. (PROFIBUS standard).

As the standard error structure is possible for many services, it is not always noted explicitly. Its structure
and the error codes are described in appendix A.

 PROFIBUS Application Program Interface

Page: 6 PROFIBUS

3 FMS CONTEXT MANAGEMENT SERVICES

3.1 INITIATE

This service is used to establish a connection between two communication partners: The initiate requester
sends context information such as supported services, the supported options, the maximum PDU length and
the current version of the OD to its communication partner. Upon receipt of an INITIATE_REQ_PDU the FAL
of the communication partner checks whether the context of the initiate requester is compatible with its own
context.

Various reactions to an INITIATE request are possible. If the communications partner is not available or the
FDL Service Access Point are incorrectly parametrized, then FDL answers with an ABORT. If the FAS
context check is negative, then LLI responds with an ABORT. Only if the FMS context checks fails or the
called application rejects the connection establishment, a negative INITIATE response is returned.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_INITIATE
USIGN8 primitive REQ / IND
INT8 invoke_id not used
INT16 result POS

Data Block for Request and Indication:

Data structure T_CTXT_INIT_REQ

USIGN8 profile_number[2] profile number
PB_BOOL protection access protection
USIGN8 password password
USIGN8 access_groups access groups
USIGN8 dummy alignment byte
INT16 od_version od_version
USIGN8 snd_len_h max FMS-PDU size to send with high priority
USIGN8 snd_len_l max FMS-PDU size to send with low priority
USIGN8 rcv_len_h max FMS-PDU size to receive with high priority
USIGN8 rcv_len_l max FMS-PDU size to receive with low priority
USIGN8 supported_features[FEAT_SUPP_LEN] supported features

The user needs to fill in the profile_number, password and access_groups parameters. The remaining
parameters are prepared by the communication software.

FMS Services

User Manual Page: 7

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_INITIATE
USIGN8 primitive RES / CON
INT8 invoke_id not used
INT16 result POS / NEG

Data block for Response and Confirmation:

result = POS:

Data structure T_CTXT_INIT_CNF

USIGN8 profile_number[2] profile number
INT16 od_version od version
PB_BOOL protection access protection
USIGN8 password password
USIGN8 access_groups access groups
USIGN8 dummy alignment byte

result = NEG:

Data structure T_CTXT_INIT_ERR_CNF

USIGN16 class_code error class and code
USIGN8 snd_len_h max FMS-PDU size to send with high priority
USIGN8 snd_len_l max FMS-PDU size to send with low priority
USIGN8 rcv_len_h max FMS-PDU size to receive with high priority
USIGN8 rcv_len_l max FMS-PDU size to receive with low priority
USIGN8 supported_features[FEAT_SUPP_LEN] supported features

The user needs to fill in the profile_number, password, and access_groups or class_code parameters. The
remaining parameters are prepared by the communication software.

 PROFIBUS Application Program Interface

Page: 8 PROFIBUS

3.2 ABORT

With the ABORT service, the user may release an open connection. The connection may be aborted by the
Client or by the Server.

The ABORT service is also called by the protocol stack as reaction to an error situation.

Service-Description-Block for Request and Indication:
USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_ABORT
USIGN8 primitive REQ / IND
INT8 invoke_id not used
INT16 result POS

Data block for Request and Indication:

Data structure T_CTXT_ABORT_REQ

PB_BOOL local local or remote generated (PB_TRUE = local)
USIGN8 abort_id abort identifier (USR, LLI_USR, LLI, FDL)
USIGN8 reason abort reason code
USIGN8 detail_length length of detail
USIGN8 detail[DETAIL_LENGTH] detail information about abort reason

Abort Identifiers:

USR 0 identifier USER
FMS 1 identifier FMS (LLI_USR)
LLI 2 identifier LLI
FDL 3 identifier FDL

USER Abort Codes:

USR_ABT_RC1 0 disconnect
USR_ABT_RC2 1 version od incompatible
USR_ABT_RC3 2 password error
USR_ABT_RC4 3 profile number incompatible
USR_ABT_RC5 4 limited service permitted
USR_ABT_RC6 5 od loading interacting permitted

FMS Services

User Manual Page: 9

FMS Abort Codes:

FMS_ABT_RC1 0 FMS-CRL error
FMS_ABT_RC2 1 user error
FMS_ABT_RC3 2 FMS-PDU error
FMS_ABT_RC4 3 connection state conflict LLI
FMS_ABT_RC5 4 LLI error
FMS_ABT_RC6 5 PDU size
FMS_ABT_RC7 6 feature not supported
FMS_ABT_RC8 7 invoke id error response
FMS_ABT_RC9 8 max services overflow
FMS_ABT_RC10 9 connection state conflict FMS
FMS_ABT_RC11 10 service error
FMS_ABT_RC12 11 invoke id error request
FMS_ABT_RC13 12 FMS is disabled

LLI Abort Codes:

LLI_ABT_RC1 0 LLI context check neg
LLI_ABT_RC2 1 invalid LLI-PDU during associate or abort
LLI_ABT_RC3 2 invalid LLI-PDU during data transfer phase
LLI_ABT_RC4 3 unknown or invalid LLI-PDU received
LLI_ABT_RC5 4 DTA-ACK-PDU received and SAC = 0
LLI_ABT_RC6 5 max no of parallel services exceeded (by LLI)
LLI_ABT_RC7 6 unknown invoke id
LLI_ABT_RC8 7 priority error
LLI_ABT_RC9 8 local error at remote station
LLI_ABT_RC10 9 timeout during associate
LLI_ABT_RC11 10 timeout on cyclic connection
LLI_ABT_RC12 11 timeout of idle receive time
LLI_ABT_RC13 12 error while activating LSAP
LLI_ABT_RC14 13 illegal FDL primitive during ASS or ABT
LLI_ABT_RC15 14 illegal FDL primitive in data transfer
LLI_ABT_RC16 15 unknown FDL primitive
LLI_ABT_RC17 16 unknown LLI primitive
LLI_ABT_RC18 17 illegal LLI primitive during ASS or ABT
LLI_ABT_RC19 18 illegal LLI primitive in data transfer
LLI_ABT_RC20 19 invalid CRL entry
LLI_ABT_RC21 20 ASS connection state conflict
LLI_ABT_RC22 21 procedural error on cyclic connection
LLI_ABT_RC23 22 max no of parallel services exceeded (by FMS)
LLI_ABT_RC24 23 CRL being loaded, LLI is disabled
LLI_ABT_RC25 24 confirm / indication mode error
LLI_ABT_RC26 25 illegal FM1/2 primitive
LLI_ABT_RC27 26 illegal service on cyclic connection
LLI_ABT_RC28 27 FMS-PDU too large on cyclic connection

LLI Abort Details (AD):

Abort Code local AD remote AD
LLI_ABT_RC1 remote LLI context
LLI_ABT_RC2 LLI-PDU type
LLI_ABT_RC3 LLI_PDU type
LLI_ABT_RC4 LLI_PDU type
LLI_ABT_RC10 LLI state
LLI_ABT_RC18 LLI service
LLI_ABT_RC19 LLI service
LLI_ABT_RC27 AD_LLI_INVAL_SERV
 AD_LLI_INVAL_SERV_CHANGE
 AD_LLI_INVAL_INDEX_CHANGE

 PROFIBUS Application Program Interface

Page: 10 PROFIBUS

FDL Abort Codes:

FDL_ABT_UE 1 remote user interface error
FDL_ABT_RR 2 no remote resources available
FDL_ABT_RS 3 service not activated at remote sap
FDL_ABT_RA 4 no access to remote sap
FDL_ABT_RDL 12 no resource for send response data low
FDL_ABT_RDH 13 no resource for send response data high
FDL_ABT_LS 16 service not activated at local sap
FDL_ABT_NA 17 no reaction from remote station
FDL_ABT_DS 18 disconnected station
FDL_ABT_NO 19 FDL service not OK
FDL_ABT_LR 20 no local resources available
FDL_ABT_IV 21 invalid request parameters

FDL Abort Details:

FDL_ABT_AD1 0 error while loading update buffer
FDL_ABT_AD2 1 error while activating poll list entry
FDL_ABT_AD3 2 error while deactivating poll list entry
FDL_ABT_AD4 3 transmit error (SDA.con)
FDL_ABT_AD5 4 transmit error (CSRD.con)
FDL_ABT_AD6 5 transmit error (SRD.con)
FDL_ABT_AD7 6 receive error (CSRD.con)

FMS Services

User Manual Page: 11

3.3 REJECT

The REJECT service is used by FMS for rejecting unacceptable PDUs.

Service-Description-Block for Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS_USR
USIGN8 service FMS_REJECT
USIGN8 primitive IND
INT8 invoke_id not used
INT16 result POS

Data block for Indication:

Data structure T_CTXT_REJECT_IND

PB_BOOL detected_here local or remote detected
INT8 orig_invoke_id original invoke ID
USIGN8 pdu_type reject PDU types
USIGN8 reject_code reject code

PDU types:

CONFIRMED_REQUEST_PDU 1 confirmed request PDU
CONFIRMED_RESPONSE_PDU 2 confirmed response PDU
UNCONFIRMED_PDU 3 unconfirmed PDU
UNKNOWN_PDU_TYPE 4 unknown PDU type

Reason codes:

REJ_RC0 0 other
REJ_RC1 1 invoke id exists
REJ_RC2 2 max services overflow
REJ_RC3 3 feature not supported connection oriented
REJ_RC4 4 feature not supported connectionless
REJ_RC5 5 PDU size
REJ_RC6 6 user error connectionless

 PROFIBUS Application Program Interface

Page: 12 PROFIBUS

4 VFD SUPPORT SERVICES

4.1 LOCAL SERVICES

4.1.1 Create-VFD

This service is used by the user to create a Virtual Field Device (VFD) which is assigned to exactly one
Object Dictionary. The vfd_pointer parameter in the Communication Relationship List (CRL) entries
corresponds exactly to the vfd_number parameter of the CREATE-VFD service.

The following actions have to be done to get a operable FMS:

- one or more VFDs have to be created

- for each VFD an OD has to be loaded

- the CRL has to be loaded

If the CRL header parameter vfd_pointer_supported is set to PB_FALSE, then only the first created VFD is
valid, and all communication relationships end in this VFD.

Service-Description-Block for Request:

USIGN16 comm_ref not used
USIGN8 layer FMS
USIGN8 service FMS_CREATE_VFD_LOC
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result POS

Data block for Request:

Data structure T_VFD_CREATE_REQ

USIGN32 vfd_number VFD number
STRINGV vendor_name[MAX_VFD_STRING_LENGTH] vendor name
STRINGV model_name[MAX_VFD_STRING_LENGTH] model name
STRINGV revision[MAX_VFD_STRING_LENGTH] revision of the device
USIGN8 profile_number[2] profile number

FMS Services

User Manual Page: 13

Service-Description-Block for Confirmation:
USIGN16 comm_ref not used
USIGN8 layer FMS_USR
USIGN8 service FMS_CREATE_VFD_LOC
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS / NEG

Data block for Confirmation:

result = POS:

Data structure T_VFD_CREATE_CNF

USIGN32 vfd_number VFD number

result = NEG:

Data structure T_VFD_ERROR

T_ERROR error standard error structure
USIGN32 vfd_number VFD number

 PROFIBUS Application Program Interface

Page: 14 PROFIBUS

4.1.2 VFD-Set-Physical-Status

With this service the user may set the Physical Status of the application in the VFD Object.

Service-Description-Block for Request:

USIGN16 comm_ref not used
USIGN8 layer FMS
USIGN8 service FMS_VFD_SET_PHYS_STATUS_LOC
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result POS

Data block for Request:

Data structure T_VFD_SET_PHYS_STATUS_REQ

USIGN32 vfd_number VFD number
USIGN8 physical_status physical status (--> 4.2.2)
USIGN8 dummy alignment byte

Service-Description-Block for Confirmation:

USIGN16 comm_ref not used
USIGN8 layer FMS_USR
USIGN8 service FMS_VFD_SET_PHYS_STATUS_LOC
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS / NEG

Data block for Confirmation:

result = POS:

Data structure T_VFD_SET_PHYS_STATUS_CNF

USIGN32 vfd_number VFD number

result = NEG:

Data structure T_VFD_ERROR

T_ERROR error standard error structure
USIGN32 vfd_number VFD number

FMS Services

User Manual Page: 15

4.2 REMOTE SERVICES

4.2.1 Status

The STATUS service is used for reading the status of a remote VFD.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_STATUS
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

Data block for Request and Indication:
n/a

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_STATUS
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

Data block for Response and Confirmation:

result = POS:

Data structure T_VFD_STATUS_CNF

USIGN8 logical_status logical status (--> 4.2.2
USIGN8 physical_status physical status (--> 4.2.2)
USIGN8 local_detail[3] local detail
USIGN8 dummy alignment byte

In the Response, the user has to fill in the parameters local_detail and physical_status, the other parameters
are set by FMS.

result = NEG:

Data structure T_ERROR standard error structure

 PROFIBUS Application Program Interface

Page: 16 PROFIBUS

4.2.2 Unsolicited-Status

The UNSOLICITED-STATUS service is used by the application (server) to spontaneously transfer a VFD's
device/user status. There is no confirmation.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_UNSOLICITED_STATUS
USIGN8 primitive REQ / IND
INT8 invoke_id not used
INT16 result POS

Data block for Request and Indication:

Data structure T_VFD_UNSOL_STATUS_REQ

USIGN8 priority LOW / HIGH
USIGN8 logical_status logical status
USIGN8 physical_status physical status
USIGN8 dummy1 alignment byte
USIGN8 local_detail[3] local detail
USIGN8 dummy2 alignment byte

VFD stati:

Logical Status:

STATE_CHANGES_ALLOWED 0 ready to communicate, all services allowed
LIMITED_SERVICES_PERMITTED 2 only limited number of services allowed
OD_LOADING_NON_INTERACTING 4 PUT-OD working, no other PUT-OD allowed at the moment
OD_LOADING_INTERACTING 5 all connections aborted due to PUT-OD

Physical Status:

OPERATIONAL 0 ready
PARTIALLY_OPERATIONAL 1 partially ready
INOPERABLE 2 not ready
NEEDS_COMMISSIONING 3 needs commissioning

FMS Services

User Manual Page: 17

4.2.3 Identify

The IDENTIFY service selects information for identifying a VFD.

Service-Description-Block for Request and Indication
USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_IDENTIFY
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

Data block for Request and Indication:

n/a

Service-Description-Block for Response and Confirmation:
USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_IDENTIFY
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

Data block for Response and Confirmation:
result = POS:

Data structure T_VFD_IDENTIFY_CNF

STRINGV vendor_name[MAX_VFD_STRING_LENGTH] producer of the device
STRINGV model_name[MAX_VFD_STRING_LENGTH] model name of the device
STRINGV revision[MAX_VFD_STRING_LENGTH] revision of the device

result = NEG:

Data structure T_ERROR standard error structure

If, in the response, the string length (the first byte) is set to zero, the identifier strings are filled in by FMS.
Otherwise, the user has to do this job.

 PROFIBUS Application Program Interface

Page: 18 PROFIBUS

5 OD MANAGEMENT

5.1 LOCAL SERVICES

5.1.1 Loading an Object Dictionary

One or more Object Descriptions are loaded into a local Object Dictionary by means of the service sequence
INITIATE-LOAD-OD-LOC, LOAD-OD-LOC and TERMINATE-LOAD-OD-LOC. A distinction is made between
loading free of interactions and loading not free of interactions.

The load process is free of interactions if the OD modifications do not affect communication relationships of
other stations, e.g. when appending Object Descriptions or deleting private Object Descriptions
(consequence 0).

The loading process is not free of interactions if other communication relationships access the modified
Object Descriptions. In this case the application must abort all communication relationships, then establish
them again with the modified OD version number.

If consequence 1 is specified in the case of loading not free of interactions, then only individual entries can
be modified and only the new version number is fetched when the header is loaded. However, for
consequence 2 the whole Object Dictionary is deleted and must be reloaded including the header.

5.1.1.1 Initiate-Load-OD-LOC

This service starts the load process.

Service-Description-Block for Request:

USIGN16 comm_ref not used
USIGN8 layer FMS
USIGN8 service FMS_INIT_LOAD_OD_LOC
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result POS

FMS Services

User Manual Page: 19

Data block for Request:

Data structure T_INIT_LOAD_OD_REQ

USIGN32 vfd_number VFD number
INT8 consequence load interacting/ non-interacting
INT8 dummy alignment byte

Consequence:

CONSEQUENCE_0 0 non-interacting
CONSEQUENCE_1 1 interacting (only changes)
CONSEQUENCE_2 2 interacting (new OD)

Service-Description-Block for Confirmation:

USIGN16 comm_ref not used
USIGN8 layer FMS_USR
USIGN8 service FMS_INIT_LOAD_OD_LOC
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS /NEG

Data block for Confirmation:

result = POS:

Data structure T_INIT_LOAD_OD_CNF

USIGN32 vfd_number VFD number

result = NEG:

Data structure T_SRC_OD_ERROR

T_ERROR error standard error structure
USIGN32 vfd_number VFD number
USIGN16 index index

 PROFIBUS Application Program Interface

Page: 20 PROFIBUS

5.1.1.2 Load-OD-LOC

This service is used for loading an Object Description in a local Object Dictionary.

Service-Description-Block for Request:

USIGN16 comm_ref not used
USIGN8 layer FMS
USIGN8 service FMS_LOAD_OD_LOC
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result POS

Data block for Request:

Data structure T_LOAD_OD_REQ

USIGN32 vfd_number VFD number
T_OBJECT_DESCR obj_descr object description (--> 5.3.1)

Data structure T_OBJECT_DESCR

union
{
T_OD_OBJ_DESCR_HDR od_obj_descr od object description
T_OD_NULL_OBJECT null_obj_descr null object description
T_OD_ST_DT_DESCR dt_obj_descr standard data type object description
T_OD_ST_DS_DESCR ds_obj_descr standard data structure object description
T_SIMPLE_VAR_OBJECT s_var_obj_descr simple variable object description
T_ARRAY_OBJECT a_var_obj_descr array variable object description
T_RECORD_OBJECT r_var_obj_descr record variable object description
T_VAR_LIST_OBJECT vlist_obj_descr variable list object description
T_DOM_OBJECT dom_obj_descr domain object description
T_EVENT_OBJECT evn_obj_descr event object description
T_PI_OBJ pi_obj_descr program invocation object description
} id

Service-Description-Block for Confirmation:

USIGN16 comm_ref not used
USIGN8 layer FMS_USR
USIGN8 service FMS_LOAD_OD_LOC
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS / NEG

FMS Services

User Manual Page: 21

Data block for Confirmation:

result = POS:

Data structure T_LOAD_OD_CNF

USIGN32 vfd_number VFD number

result = NEG:

Data structure T_SRC_OD_ERROR

T_ERROR error standard error structure
USIGN32 vfd_number VFD number
USIGN16 index index

 PROFIBUS Application Program Interface

Page: 22 PROFIBUS

5.1.1.3 Terminate-Load-OD-LOC

This service terminates the load process.

Service-Description-Block for Request:

USIGN16 comm_ref not used
USIGN8 layer FMS
USIGN8 service FMS_TERM_LOAD_OD_LOC
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result POS

Data block for Request:

Data structure T_TERM_LOAD_OD_REQ

USIGN32 vfd_number VFD number

Service-Description-Block for Confirmation:

USIGN16 comm_ref not used
USIGN8 layer FMS_USR
USIGN8 service FMS_TERM_LOAD_OD_LOC
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS / NEG

Data block for Confirmation:

result = POS:

Data structure T_TERM_LOAD_OD_CNF

USIGN16 vfd_number VFD number

result = NEG:

Data structure T_SRC_OD_ERROR

T_ERROR error standard error structure
USIGN32 vfd_number VFD number
USIGN16 index index

FMS Services

User Manual Page: 23

5.1.2 Reading an Object Description

5.1.2.1 OD-Read

This service is used for selecting an Object Description from a local Object Dictionary.

Service-Description-Block for Request:

USIGN16 comm_ref not used
USIGN8 layer FMS
USIGN8 service FMS_OD_READ_LOC
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result POS

Data block for Request:

Data structure T_OD_READ_LOC_REQ

USIGN32 vfd_number VFD number
USIGN8 obj_code object code
USIGN8 dummy alignment byte
T_ACC_SPEC acc_spec access specification

Data structure T_ACC_SPEC

USIGN8 tag access mode
USIGN8 dummy alignment byte

union
{
USIGN16 index index of object
STRINGV name[MAX_ACCESS_NAME_LENGTH] symbolic name of object
} id

ACCESS_INDEX 0 access by index
ACCESS_NAME 1 access by symbolic name
ACCESS_NAME_LIST 2 access by variable list name

 PROFIBUS Application Program Interface

Page: 24 PROFIBUS

Service-Description-Block for Confirmation:

USIGN16 comm_ref not used
USIGN8 layer FMS_USR
USIGN8 service READ_OD_LOC
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS / NEG

Data block for Confirmation:

result = POS:

Data structure T_OD_READ_LOC_CNF

USIGN32 vfd_number VFD number
T_OBJECT_DESCR obj_descr object description (--> 5.3.1)

Data structure T_OBJECT_DESCR

union
{
T_OD_OBJ_DESCR_HDR od_obj_descr od object description
T_OD_NULL_OBJECT null_obj_descr null object description
T_OD_ST_DT_DESCR dt_obj_descr standard data type object description
T_OD_ST_DS_DESCR ds_obj_descr standard data structure object description
T_SIMPLE_VAR_OBJECT s_var_obj_descr simple variable object description
T_ARRAY_OBJECT a_var_obj_descr array variable object description
T_RECORD_OBJECT r_var_obj_descr record variable object description
T_VAR_LIST_OBJECT vlist_obj_descr variable list object description
T_DOM_OBJECT dom_obj_descr domain object description
T_EVENT_OBJECT evn_obj_descr event object description
T_PI_OBJ pi_obj_descr program invocation object description
} id

result = NEG:

Data structure T_SRC_OD_ERROR

T_ERROR error standard error structure
USIGN32 vfd_number VFD number
USIGN16 index index

Since the object codes for all objects are in the third byte, the appropriate data structure of the union can be
found by checking this byte.

FMS Services

User Manual Page: 25

5.2 REMOTE SERVICES

5.2.1 Get-OD

One or more Object Descriptions are read with the GET-OD service. The service distinguishes between a
short and a long form of Object Descriptions. The long form of the GET-OD service is optional.

Either the name or the index must be specified for reading a single Object Description. Names are searched
for only within the object class (see also access mode).

For reading more than one, or all Object Descriptions, the index of the first Object Description to be read
must be specified (the start index, see also access mode). To select the whole Object Dictionary this
service must normally be called more than once.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_GET_OD
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

Data block for Request and Indication:

Data structure T_GET_OD_REQ

PB_BOOL format PB_TRUE = long, PB_FALSE = short format
USIGN8 dummy alignment byte
T_ACC_SPEC acc_spec access specification

Data structure T_ACC_SPEC

USIGN8 tag access mode
USIGN8 dummy alignment byte

union
{
USIGN16 index index of object
STRINGV name[MAX_ACCESS_NAME_LENGTH] symbolic name of object
} id

 PROFIBUS Application Program Interface

Page: 26 PROFIBUS

Access mode:

INDEX_ACCESS 1 access by index
VAR_NAME_ACCESS 2 access by variable name
VAR_LIST_NAME_ACCESS 3 access by variable list name
DOMAIN_NAME_ACCESS 4 access by domain name
PI_NAME_ACCESS 5 access by program invocation name
EVENT_NAME_ACCESS 6 access by event name
START_INDEX_ACCESS 7 access by start index

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_GET_OD
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

Data block for Response and Confirmation:

result = POS:1)

Data structure T_GET_OD_CNF:

PB_BOOL more_follows further object descriptions follow
USIGN8 no_of_od_descr number of object descriptions
T_PACKED_OBJECT_DESCR packed_object_descr[no_of_od_descr] packed array of object descriptions (--> 5.3.2)

1) if the user sets "result = POS" and "no_of_od_descr = 0", the data block is filled in by the
 communication software!

result = NEG:

Data structure T_ERROR standard error structure

FMS Services

User Manual Page: 27

5.2.2 Put-OD Services

One or more Object Descriptions are written with the PUT-OD services. A distinction is made between
loading free of interaction and loading not free of interaction.

The loading process is free of interaction when communication relationships with other stations are not
affected by the OD modifications. This is the case for example when appending Object Descriptions or
deleting private Object Descriptions. (consequence 0).

The loading process is not free of interaction when other communication relationships access the modified
Object Descriptions. In this case the application must abort all communication relationships, except for the
one from which the PUT-OD service is being executed, then construct them again with the modified OD
version number.

If consequence 1 is specified in the case of loading not free of interaction, then only individual entries can be
modified and only the new version number is fetched when the header is loaded. However, for consequence
2 the whole Object Dictionary is deleted and must be reloaded including the header.

5.2.2.1 Initiate-Put-OD

This service initiates the loading (either with or without retrospective effect) of an Object Dictionary of a
remote PROFIBUS station.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_INIT_PUT_OD
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

 PROFIBUS Application Program Interface

Page: 28 PROFIBUS

Data block for Request and Indication:

Data structure T_INIT_PUT_OD_REQ

INT8 consequence load interacting / non-interacting

Consequence:

CONSEQUENCE_0 0 non interacting
CONSEQUENCE_1 1 interacting
CONSEQUENCE_2 2 OD completely new

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_INIT_PUT_OD
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

Data block for Response and Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_ERROR standard error structure

FMS Services

User Manual Page: 29

5.2.2.2 Put-OD

The Put-OD service is used for writing one or more Object Descriptions into a remote station's Object
Dictionary.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_PUT_OD
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

Data block for Request and Indication:

Data structure T_PUT_OD_REQ

USIGN8 dummy alignment byte
USIGN8 no_of_od_descr number of object descriptions
T_PACKED_OBJECT_DESCR packed_object_descr[no_of_od_descr] packed array of object descriptions (--> 5.3.2)

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_PUT_OD
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

Data block for Response and Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_ERROR standard error structure

 PROFIBUS Application Program Interface

Page: 30 PROFIBUS

5.2.2.3 Terminate-Put-OD

This service terminates the loading of an Object Dictionary into a remote station.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_TERM_PUT_OD
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

Data block:

n/a

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_TERM_PUT_OD
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

Data block for Response and Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_ERROR standard error structure

FMS Services

User Manual Page: 31

5.3 COMMUNICATION OBJECT STRUCTURE

The following section describes the C-structures of all basic object types.

5.3.1 Objects in Local Object Dictionary

A complete Object Description is transferred with the LOAD-OD-LOC or OD-READ service when loading
locally or reading the Object Dictionary.

The general Object Description is a union of 11 specific Object Descriptions:

- object dictionary header,
- null object,
- data type,
- structure description of data type,
- simple variable,
- array,
- record,
- variable list,
- domain,
- alarm (event),
- program invocation.

General Object Description

Data structure T_OBJECT_DESCR

union
{
 T_OD_OBJ_DESCR_HDR od_obj_descr
 T_OD_NULL_OBJECT null_obj_descr
 T_OD_ST_DT_DESCR dt_obj_descr
 T_OD_ST_DS_DESCR ds_obj_descr
 T_SIMPLE_VAR_OBJECT s_var_obj_descr
 T_ARRAY_OBJECT a_var_obj_descr
 T_RECORD_OBJECT r_var_obj_descr
 T_VAR_LIST_OBJECT vlist_obj_descr
 T_DOM_OBJECT dom_obj_descr
 T_EVENT_OBJECT evn_obj_descr
 T_PI_OBJECT pi_obj_descr
} id

 PROFIBUS Application Program Interface

Page: 32 PROFIBUS

Object Dictionary Header

The Object Dictionary Header contains data describing modifiability, symbol length, access rights and
version of the Object Dictionary and start indices, length and internal addresses for each of the four parts of
the OD:

- Static Type Dictionary
- Static Object Dictionary
- Dynamic Variable List Dictionary
- Dynamic Program Invocation Dictionary

Data structure T_OD_OBJ_DESCR_HDR

USIGN16 index index = 0
USIGN8 obj_code object-code = 1
PB_BOOL flag PB_FALSE = write protected
USIGN8 length size of names (0-32)
PB_BOOL protection access protection supported
INT16 version version
INT16 len_st_od length of the static type description
USIGN16 first_index_s_od start index of the static object description
INT16 len_s_od length of the static object description
USIGN16 first_index_dv_od start index of the dyn. variable list description
INT16 len_dv_od length of the dyn. variable list description
USIGN16 first_index_dp_od start index of the dyn. pi description
INT16 len_dp_od length of the dyn. pi description
USIGN32 int_addr internal address of od description
USIGN32 int_addr_st_od internal address of the static type description
USIGN32 int_addr_s_od internal address of the static object description
USIGN32 int_addr_dv_od internal address of the dyn. variable list description
USIGN32 int_addr_dp_od internal address of the dyn. pi description

Null Object

The Null Object is a place holder for standard data types not foreseen in the Static Type Dictionary. Deleted
objects are replaced by Null Objects.

Data structure T_OD_NULL_OBJECT

USIGN16 index index
USIGN8 obj_code object code
USIGN8 dummy alignment byte

FMS Services

User Manual Page: 33

Data Type Description

Objects of this type represent data type definitions and are stored in the Static Type Dictionary. They cannot
be modified in PROFIBUS.

PROFIBUS recognizes 14 predefined data types which are located in indices 1 through 14 in the Static Type
Dictionary as follows:

Define Value Description
OD_BOOL 1 Boolean
OD_INT8 2 Integer8
OD_INT16 3 Integer16
OD_INT32 4 Integer32
OD_USIGN8 5 Unsigned8
OD_USIGN16 6 Unsigned16
OD_USIGN32 7 Unsigned32
OD_FLOAT 8 Floating Point
OD_VSTRING 9 Visible String
OD_OSTRING 10 Octet String
OD_DATE_TYPE 11 Date Type
OD_TIME_OF_DAY 12 Time of Day
OD_TIME_DIFF 13 Time Difference
OD_BSTRING 14 Bit String

Data structure T_OD_ST_DT_DESCR

USIGN16 index index
USIGN8 obj_code object code
USIGN8 dummy alignment byte
STRINGV meaning[MAX_OBJECT_NAME_LENGTH] meaning of the type; for information

 PROFIBUS Application Program Interface

Page: 34 PROFIBUS

Description of Data Type Structures

Objects of this type describe the structure of compound data types, i.e. records. They are stored in the same
place as the Data Type Descriptions, in the Static Type Dictionary. Record objects must contain a reference
to such a data type structure description in their Object Description. A single description of a data type
structure can be valid for more than one record object.

Data structure T_OD_ST_DS_DESCR

USIGN16 index index
USIGN8 obj_code object code
USIGN8 no_of_elements number of record elements
USIGN32 reserved for internal use
T_OD_DT_LIST dt_list[no_of_elements] data type list

Data structure T_OD_DT_LIST

USIGN16 index_of_type index of related type description
USIGN8 length length of the element in octets
USIGN8 dummy alignment byte

Objects in the Static Object Dictionary

Variable Objects (except for Variable Lists), Domain Objects and Event Objects are stored in the Static
Object Dictionary.

All Variable services are applicable to the Variable Objects, Event services are applicable to Events and
Domain services to Domains.

Simple Variable

Data structure T_SIMPLE_VAR_OBJECT

USIGN16 index logical address of the object
USIGN8 obj_code object code
USIGN8 length length of object in octets
USIGN16 index_of_type logical address of the type
T_ACCESS access access right structure
USIGN32 local_address local address
STRINGV name[MAX_OBJECT_NAME_LENGTH] name
USIGN8 extension[MAX_EXTENSION_LENGTH] extension

FMS Services

User Manual Page: 35

Simple Data Type Field (Array)

Data structure T_ARRAY_OBJECT

USIGN16 index logical address of the object
USIGN8 obj_code object code
USIGN8 length length of an element in octets
USIGN16 index_of_type logical address of the type
USIGN8 nof_elements number of array elements
USIGN8 dummy alignment byte
T_ACCESS access access right structure
USIGN32 local_address local address
STRINGV name[MAX_OBJECT_NAME_LENGTH] name
USIGN8 extension[MAX_EXTENSION_LENGTH] extension

Structured Variable (Record)

Data structure T_RECORD_OBJECT

USIGN16 index index
USIGN8 obj_code object code
USIGN8 no_of_address number of local addresses
USIGN16 index_of_type logical address of the type
T_ACCESS access access right structure
STRINGV name[MAX_OBJECT_NAME_LENGTH] name
USIGN8 extension[MAX_EXTENSION_LENGTH] extension
USIGN32 reserved for internal use
USIGN32 local_address_list[no_of_address] local address list

Variable List

A Variable List is defined as a set of existing objects and represents a new object which is entered in the
Dynamic Variable List Dictionary.

Data structure T_VAR_LIST_OBJECT

USIGN16 index logical address of the object
USIGN8 obj_code object code
USIGN8 no_of_var number of variables
T_ACCESS access access right
PB_BOOL deletable PB_TRUE = deletable
USIGN8 dummy alignment-byte
STRINGV name[MAX_OBJECT_NAME_LENGTH] name
USIGN8 extension[MAX_EXTENSION_LENGTH] extension
USIGN32 reserved for internal use
USIGN16 var_list[no_of_var] list of variables

 PROFIBUS Application Program Interface

Page: 36 PROFIBUS

Domain

Data structure T_DOM_OBJECT

USIGN16 index index
USIGN8 obj_code object code
USIGN8 state domain state
USIGN8 upload_state upload state
INT8 counter in use counter
USIGN16 max_octets max domain length
T_ACCESS access access protection
USIGN32 local_address local address
STRINGV name[MAX_OBJECT_NAME_LENGTH] symbolic name
USIGN8 extension[MAX_EXTENSION_LENGTH] extension

Event

Data structure T_EVENT_OBJECT

USIGN16 index_event index
USIGN8 obj_code object code
USIGN8 data_length size of event data
USIGN16 index_event_data index of event-data
T_ACCESS access access protection
PB_BOOL enabled PB_TRUE = event is enabled
USIGN8 dummy alignment byte
STRINGV name[MAX_OBJECT_NAME_LENGTH] symbolic name
USIGN8 extension[MAX_EXTENSION_LENGTH] extension

Program Invocation

A Program Invocation (PI) is an executable program consisting of one or more Domains which contain
program code and data. The first Domain in the associated Domain list must contain executable code. A PI
object can be created dynamically and is then entered in the Dynamic Program Invocation Dictionary as a
new object.

Data structure T_PI_OBJECT

USIGN16 index pi_index in od
USIGN8 obj_code object code for OD
USIGN8 cnt_dom number of domains
T_ACCESS access access
PB_BOOL deletable deletable
PB_BOOL reusable reusable
USIGN8 pi_state state of pi
USIGN8 dummy alignment byte
STRINGV name[MAX_OBJECT_NAME_LENGTH] symbolic name of pi
USIGN8 extension[MAX_EXTENSION_LENGTH] extension
USIGN32 reserved for internal use
USIGN16 dom_list[cnt_dom] domain index list

FMS Services

User Manual Page: 37

Access Structures for Object Addressing

Fixed Access Structure (all services except FMS-DEF-VAR-LIST and FMS-PI-CREATE) :

Data structure T_ACC_SPEC

USIGN8 tag access mode
USIGN8 dummy alignment byte

union
{
USIGN16 index index of object
STRINGV name[MAX_ACCESS_NAME_LENGTH] symbolic name of object
} id

Dynamic Access Structure (only for FMS-DEF-VAR-LIST and FMS-PI-CREATE services) :

Data structure T_DYN_ACC_SPEC

USIGN8 tag access mode
USIGN8 length length of access specification
USIGN8 acc_spec[length] access specification (index or name)

Access mode (all services except FMS-GET-OD, FMS-DEF-VAR-LIST and FMS-PI-CREATE):

ACCESS_INDEX 0 access by index
ACCESS_NAME 1 access by symbolic name
ACCESS_NAME_LIST 2 access by variable list name

Access mode for FMS_DEF-VAR-LIST and FMS-PI-CREATE services:

DYN_ACCESS_INDEX 3 access by index
DYN_ACCESS_NAME 4 access by symbolic name

Access mode for FMS-GET-OD service:

INDEX_ACCESS 1 access by index
VAR_NAME_ACCESS 2 access by variable name
VAR_LIST_NAME_ACCESS 3 access by variable list name
DOMAIN_NAME_ACCESS 4 access by domain name
PI_NAME_ACCESS 5 access by program invocation name
EVENT_NAME_ACCESS 6 access by event name
START_INDEX_ACCESS 7 access by start index

 PROFIBUS Application Program Interface

Page: 38 PROFIBUS

Access Protection Specification

Data structure T_ACCESS

USIGN8 pass_word password
USIGN8 acc_groups access groups
USIGN16 acc_right access rights

Object Codes

NULL_OBJECT 0 null object description
OD_OBJECT 1 od object description
DOMAIN_OBJECT 2 domain object description
INVOCATION_OBJECT 3 program invocation object description
EVENT_OBJECT 4 event object description
TYPE_OBJECT 5 data type object description
TYPE_STRUCT_OBJECT 6 data structure object description
SIMPLE_VAR_OBJECT 7 simple variable object description
ARRAY_OBJECT 8 array variable object description
RECORD_OBJECT 9 record variable object description
VAR_LIST_OBJECT 10 variable list object description

Implementation-specific:

VAR_OBJECT 11 Class of all variable objects
ALL_OBJECT 12 Class of all objects

FMS Services

User Manual Page: 39

5.3.2 PROFIBUS Object Description Transfer

The GET-OD and PUT-OD FMS services can be used to read or modify communication partners' object
dictionaries. Both services are able to transfer one or more Object Descriptions. The number of actual
Object Descriptions transferred is indicated by the no_of_od_descr parameter.

EN 50170/2 (FMS) defines the coding for Object Description services as well as for the basic data types.
This coding cannot be directly represented in the local Object Descriptions, since the descriptions are
transferred on the bus without gaps and in "Motorola format" (i.e. high byte first).

The GET-OD response is coded by the communication software in the prescribed format in accordance with
the data in the Object Dictionary. The GET-OD confirmation contains one or more Object Descriptions in
byte string format, to be interpreted by the application according to the PROFIBUS specification.

In the same way the PUT-OD service transfers one or more Object Descriptions as byte strings and the
application must handle the structuring and interpretation according to the PROFIBUS specification.

Each individual Object Description consists of a length data item and the actual Object Description itself in
accordance with EN 50170/2 (FMS):

Data structure T_PACKED_OBJECT_DESCR

USIGN8 length length of packed object description
USIGN8 packed_obj_descr[length] packed object description

For correct OD transfer the object descriptions must not contain alignment bytes. Aligning on word delimiters
or long word delimiters causes gaps between the length data item and the Object Description, which leads to
incorrect PDU formats.

 PROFIBUS Application Program Interface

Page: 40 PROFIBUS

List of packed Object Descriptions

The mapping of the individual object descriptions onto the parameter packed_obj_descr of the services
GetOD and PutOD is shown graphically in the following figures. The representation contains two lines. The
name of the object attributes are in the upper line. The lower line contains the data types. If the length of the
line is insufficient, the representation is continued on the following line.

Using GetOD service in short form the shaded elements in the graphically figures will not be transfered.

Structure of the OD Object Description

Index ROM/RAM
flag

Name
Length

Access
Protection
Supported

Version
OD

Local
Address
OD-OD

ST-OD
Length

Local
Address
ST-OD

First
Index
S-OD

S-OD
Length

Unsigned16 Boolean Unsigned8 Boolean Integer16 Unsigned3
2

Integer16 Unsigned3
2

Unsigned1
6

Integer16

Local

Address
S-OD

First
Index

DV-OD

DV-OD
Length

Local
Address
DV-OD

First
Index

DP-OD

DP-OD
Length

Local
Address
DP-OD

Unsigned32 Unsigned1
6

Integer16 Unsigned32 Unsigned16 Integer16 Unsigned3
2

Structure of the OD NULL Object Description

Index Object

Code

Unsigned16 Unsigned8

Structure of the OD Data Type Description

Index Object

Code

Symbolic Name

Name Length Name

Unsigned16 Unsigned8 Unsigned8 Visible String

FMS Services

User Manual Page: 41

Structure of the OD Data Type Structure Description

Index Object
Code

Number of
Elements

Data Type
Index (1)

Length (1)

..

Data Type
Index (n)

Length (n)

Unsigned16 Unsigned8 Unsigned8 Unsigned16 Unsigned8 Unsigned16 Unsigned 8

Structure of the Simple Variable Object Description

Index Object
Code

Data Type
Index

Length Password Access
Groups

Access
Rights

Local
Address

Unsigned16 Unsigned8 Unsigned1
6

Unsigned8 Unsigned8 Bit String
8Bit

Bit String
16Bit

Unsigned3
2

Variable

Name

Extension

Length Data

Visible
String

Unsigned8 Octet
String

Structure of the Array Variable Object Description

Index Object
Code

Data Type
Index

Length Number of
Elements

Password Access
Groups

Access
Rights

Local
Address

Unsigned16 Unsigned8 Unsigned1
6

Unsigned8 Unsigned8 Unsigned8 Bit String
8Bit

Bit String
16Bit

Unsigned3
2

Array

Name

Extension

Length Data

Visible
String

Unsigned8 Octet
String

 PROFIBUS Application Program Interface

Page: 42 PROFIBUS

Structure of the Record Variable Object Description

Index Object

Code

Data Type

Index

Password Access

Groups

Access

Rights

Record

Name

Extension

Length Data

Unsigned16 Unsigned8 Unsigned1
6

Unsigned8 Bit String
Bit8

Bit String
16Bit

Visible
String

Unsigned8

Octet
String

Local

Address (1)

..

Local
Address (n)

Unsigned3
2

 Unsigned3
2

 Structure of the Domain Object Description

Index Object
Code

Max
Octets

Password Access
Groups

Access
Rights

Local
Address

Domain
State

Upload
State

Counter

Unsigned16 Unsigned8 Unsigned1
6

Unsigned8 Bit String
8Bit

Bit String
16Bit

Unsigned3
2

Unsigned8 Unsigned8 Integer8

Domain
Name

Extension

Length Data

Visible
String

Unsigned8 Octet

String

Structure of the Event Object Description

Index Object
Code

Data Type
Index

Length Password Access
Groups

Access
Rights

Enabled

Unsigned16 Unsigned8 Unsigned1
6

Unsigned8 Unsigned8 Bit String
8Bit

Bit String
16Bit

Boolean

Event

Name

Extension

Length Data

Visible
String

Unsigned8 Octet

String

FMS Services

User Manual Page: 43

Structure of the Variable List Object Description

Index Object
Code

Number of
Elements

Password Access
Groups

Access
Rights

Deletable Element
Index (1)

..

Element
Index (n)

Unsigned16 Unsigned8 Unsigned8 Unsigned8 Bit String
8Bit

Bit String
16Bit

Boolean Unsigned1
6

 Unsigned16

VarList

Name

Extension

Length Data

Visible
String

Unsigned8 Octet

String

Structure of the Program Invocation Object Description

Index Object
Code

Number of
Domains

Password Access
Groups

Access
Rights

Deletable Reusable PI State

Unsigned16 Unsigned8 Unsigned8 Unsigned8 Bit String
8Bit

Bit String
16Bit

Boolean Boolean Unsigned8

Domain

Index (1)

..

Domain

Index (n)

PI

Name

Extension

Length Data

Unsigned16 Unsigned16 Visible
String

Unsigned8 Octet

String

 PROFIBUS Application Program Interface

Page: 44 PROFIBUS

6 VARIABLE ACCESS

6.1 READ

The values of Simple Variables, Arrays and Records of the communication partner may be read by using
this service. Single elements of Arrays and Records may be accessed with a subindex.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_READ
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

Data block for Request and Indication:

Data structure T_VAR_READ_REQ

T_ACC_SPEC acc_spec access specification
USIGN8 subindex subindex
USIGN8 dummy alignment byte

Data structure T_ACC_SPEC

USIGN8 tag access mode 1)
USIGN8 dummy alignment byte

union
{
USIGN16 index index of object
STRINGV name[MAX_ACCESS_NAME_LENGTH] symbolic name of object
} id

1) ACCESS_INDEX 0 access by index
 ACCESS_NAME 1 access by symbolic name
 ACCESS_NAME_LIST 2 access by variable list name

FMS Services

User Manual Page: 45

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_READ
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

Data block for Response and Confirmation:

result = POS:

Data structure T_VAR_READ_CNF

USIGN8 dummy alignment byte
USIGN8 length length of data field in octets
USIGN8 value[length] data field

result = NEG:

Data structure T_ERROR standard error structure

 PROFIBUS Application Program Interface

Page: 46 PROFIBUS

6.2 WRITE

With this service, values are written in objects of the communication partner. The service may be used for
Simple Variables, Arrays, Records and Variable Lists. Single elements of Arrays and Records may be
accessed with a subindex.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_WRITE
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

Data block for Request and Indication:

Data structure T_VAR_WRITE_REQ

T_ACC_SPEC acc_spec access specification
USIGN8 subindex subindex
USIGN8 length length of data field in octets
USIGN8 value[length] data field

Data structure T_ACC_SPEC

USIGN8 tag access mode 1)
USIGN8 dummy alignment byte

union
{
USIGN16 index index of object
STRINGV name[MAX_ACCESS_NAME_LENGTH] symbolic name of object
} id

1) ACCESS_INDEX 0 access by index
 ACCESS_NAME 1 access by symbolic name
 ACCESS_NAME_LIST 2 access by variable list name

FMS Services

User Manual Page: 47

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_WRITE
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

Data block for Response and Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_ERROR standard error structure

 PROFIBUS Application Program Interface

Page: 48 PROFIBUS

6.3 READ-WITH-TYPE

The values and the Data Type Description of Simple Variables, Arrays and Records of the communication
partner may be read by using this service. Single elements of Arrays and Records may be accessed with a
subindex.

Service-Description-Block for Request and Indication:
USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_READ_WITH_TYPE
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

Data block for Request and Indication:
Data structure T_VAR_READ_WITH_TYPE_REQ

T_ACC_SPEC acc_spec access specification (--> 6.1)
USIGN8 subindex subindex
USIGN8 dummy alignment byte

Service-Description-Block for Response and Confirmation:
USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service READ_WITH_TYPE
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

FMS Services

User Manual Page: 49

Data block for Response and Confirmation:

result = POS:

Data structure T_VAR_READ_WITH_TYPE_CNF

USIGN8 no_of_type_descr number of type descriptions
USIGN8 length length of data field in octets
T_TYPE_DESCR type_descr_list[no_of_type_descr] list of type descriptions
USIGN8 value[length] data field

result = NEG:

Data structure T_ERROR standard error structure

Data structure T_TYPE_DESCR

USIGN8 tag type description identifier 1)
USIGN8 dummy alignment byte
union
{
T_SIMPLE_TYPE simple; simple type
T_ARRAY_TYPE array; array type
T_RECORD_TYPE record; record type
} id

1) SIMPLE_TYPE 1
 ARRAY_TYPE 2
 RECORD_TYPE 3

Data structure T_SIMPLE_TYPE

USIGN16 data_type_index index of data type
USIGN8 length size of data type
USIGN8 dummy alignment byte

Data structure T_ARRAY_TYPE

USIGN16 data_type_index index of data type
USIGN8 length size of data type
USIGN8 no_of_elements number of data types

Data structure T_RECORD_TYPE

USIGN8 no_of_elements number of record elements
USIGN8 dummy alignment byte
T_SIMPLE_TYPE simple[MAX_VAR_RECORD_ELEMENTS] list of simple types

 PROFIBUS Application Program Interface

Page: 50 PROFIBUS

6.4 WRITE-WITH-TYPE

With this service, values are written in objects of the communication partner. In difference to the WRITE
service, a Data Type Description is added to the data to be written. The service may be used for Simple
Variables, Arrays, Records and Variable Lists. Single elements of Arrays and Records may be accessed
with a subindex.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_WRITE_WITH_TYPE
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

Datablock for Request and Indication:

Data structure T_VAR_WRITE_WITH_TYPE_REQ

T_ACC_SPEC acc_spec access specification (--> 6.2)
USIGN8 subindex subindex
USIGN8 dummy alignment byte
USIGN8 no_of_type_descr number of type descriptions
USIGN8 length length of data field in octets
T_TYPE_DESCR type_descr_list[no_of_type_descr] type description list (--> 6.3)
USIGN8 value[length] data field

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_WRITE_WITH_TYPE
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

Data block for Response and Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_ERROR standard error structure

FMS Services

User Manual Page: 51

6.5 INFORMATION-REPORT

With this service, the values of local objects are transmitted to the communication partner. The service may
be used for Simple Variables, Arrays, Records and Variable Lists. Single elements of Arrays and Records
may be access with the subindex. The execution of this service is not confirmed by the communication
partner. Hence, the INFORMATION-REPORT service is functionally equivalent to an unrequested READ
response.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_INFO_RPT
USIGN8 primitive REQ / IND
INT8 invoke_id not used
INT16 result POS

Data block for Request and Indication:

Data structure T_VAR_INFO_RPT_REQ

USIGN8 priority LOW / HIGH
USIGN8 subindex subindex
T_ACC_SPEC acc_spec access specification (--> 6.1)
USIGN8 dummy alignment byte
USIGN8 length length of data field in octets
USIGN8 value[length] data field

 PROFIBUS Application Program Interface

Page: 52 PROFIBUS

6.6 INFORMATION-REPORT-WITH-TYPE

With this service, the values and the Data Type Descriptions of local objects are transmitted to the
communication partner. The service may be used for Simple Variables, Arrays, Records and Variable Lists.
Single elements of Arrays and Records may be access with the subindex. The execution of this service is
not confirmed by the communication partner. Hence, the INFORMATION-REPORT-WITH-TYPE is
functionally equivalent to an unrequested READ-WITH-TYPE response.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_INFO_RPT_WITH_TYPE
USIGN8 primitive REQ / IND
INT8 invoke_id not used
INT16 result POS

Data block for Request and Indication:

Data structure T_VAR_INFO_RPT_WITH_TYPE_REQ

USIGN8 priority LOW / HIGH
USIGN8 subindex subindex
T_ACC_SPEC acc_spec access specification (--> 6.1)
USIGN8 no_of_type_descr number of type descriptions
USIGN8 length length of data field in octets
T_TYPE_DESCR type_descr_list[no_of_type_descr] type description list (--> 6.3)
USIGN8 value[length] data field

FMS Services

User Manual Page: 53

6.7 PHYSICAL-READ

This service is used for reading a communication partner's physical access object's value.

Service-Description-Block for Request and Indication:
USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_PHYS_READ
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

Data block for Request and Indication:
Data structure T_VAR_PHYS_READ_REQ

USIGN32 Int_addr physical address to be read
USIGN8 length length in octets
USIGN8 dummy alignment byte

Service-Description-Block for Response and Confirmation:
USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_PHYS_READ
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

Data block for Response and Confirmation:

result = POS:

Data structure T_VAR_PHYS_READ_CNF

USIGN8 dummy alignment byte
USIGN8 length length of data field in octets
USIGN8 data[length] data field

result = NEG:

Data structure T_ERROR standard error structure

 PROFIBUS Application Program Interface

Page: 54 PROFIBUS

6.8 PHYSICAL-WRITE

This service is used to modify a communication partner's physical access object's value.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_PHYS_WRITE
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

Data block for Request and Indication

Data structure T_VAR_PHYS_WRITE_REQ

USIGN32 int_addr physical address to be written to
USIGN8 dummy alignment byte
USIGN8 length length of data field in octets
USIGN8 data[length] data field

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_PHYS_WRITE
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

Data block for Response and Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_ERROR standard error structure

FMS Services

User Manual Page: 55

6.9 DEFINE-VARIABLE-LIST

A Variable List Object is created at the communication partner using this service. The client user must
ensure that the data of the Variable List service may be transmitted within one PDU.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_DEF_VAR_LIST
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

Data block for Request and Indication:

Data structure T_VAR_DEFINE_VAR_LIST_REQ

T_ACCESS access access rights
STRINGV name[MAX_OBJECT_NAME_LENGTH] variable list name
USIGN8 extension[MAX_EXTENSION_LENGTH] extension
USIGN16 index index of var list (in indication only!)
USIGN8 dummy alignment byte
USIGN8 no_of_var number of variables
T_DYN_ACC_SPEC var_list[no_of_var] list of variables

Data structure T_ACCESS

USIGN8 pass_word password
USIGN8 acc_groups access groups
USIGN16 acc_right access rights

Data structure T_DYN_ACC_SPEC

USIGN8 tag access mode 1)
USIGN8 length length of access specification
USIGN8 acc_spec[length] access specification (index or name)

1) DYN_ACCESS_INDEX 3 access by index
 DYN_ACCESS_NAME 4 access by symbolic name

 PROFIBUS Application Program Interface

Page: 56 PROFIBUS

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_DEF_VAR_LIST
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

Data block for Response and Confirmation:

result = POS:

Data structure T_VAR_DEFINE_VAR_LIST_CNF

USIGN16 index index of defined variable list

result = NEG:

Data structure T_ERROR standard error structure

FMS Services

User Manual Page: 57

6.10 DELETE-VARIABLE-LIST

This service may be used to delete a Variable List Object at the communication partner.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_DEL_VAR_LIST
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

Data block for Request and Indication:

Data structure T_VAR_DELETE_VAR_LIST_REQ

T_ACC_SPEC acc_spec access spec. (--> 6.1)

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_DEL_VAR_LIST
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

Data block for Response and Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_ERROR standard error structure

 PROFIBUS Application Program Interface

Page: 58 PROFIBUS

6.11 VARIABLE-DATA-EVENT

This service is used to indicate a data event such as a new update of image data memory (IDM) at the
Master (cyclic connections).

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS_USR
USIGN8 service FMS_VAR_DATA_EVENT_LOC
USIGN8 primitive IND
INT8 invoke_id 0..127
INT16 result POS

Data block for Indication:

Data structure T_VAR_DATA_EVENT_IND

USIGN16 index variable index
USIGN8 update_ctr update counter
USIGN8 length length of data field in octets
USIGN8 value[length] data field

FMS Services

User Manual Page: 59

7 DOMAIN-MANAGEMENT SERVICES

With Domain management services it is possible to download Domains from client to server or upload
Domains from server to client. The Domain as object is always at the server end. For a given Domain only a
download or an upload can be done, but not both at the same time.

7.1 DOWNLOAD SERVICES

The download services transfer data Domains from client to server. Note that the initiative for service
invocation switches from client to server once the download service has been initialized. The services can
only be used for Master-Master communication relationships.

7.1.1 Initiate-Download-Sequence

The INITIATE-DOWNLOAD-SEQUENCE service initializes the download and lets the server know the index
or name of the Domain to be loaded.

Service-Description-Block for Request and Indication:
USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_INIT_DOWNL_SEQ
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

Data block for Request and Indication:

Data structure T_DOM_REQ

T_ACC_SPEC acc_spec access specification

Data structure T_ACC_SPEC

USIGN8 tag access mode 1)
USIGN8 dummy alignment byte

union
{
USIGN16 index index of domain
STRINGV name[MAX_ACCESS_NAME_LENGTH] symbolic name of domain
} id

1) ACCESS_INDEX 0 access by index
 ACCESS_NAME 1 access by symbolic name

 PROFIBUS Application Program Interface

Page: 60 PROFIBUS

Data block for Response and Confirmation:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_INIT_DOWNL_SEQ
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

Data block for Response and Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_ERROR standard error structure

FMS Services

User Manual Page: 61

7.1.2 Download-Segment

The actual data transport is done with the DOWNLOAD-SEGMENT service. It is initiated by the station
which has the Domain as object. The station requests all segments of the Domain in sequence until the
more_follows response is set to PB_FALSE. Segmentation must be done by the application. The data are
located in the response-PDU.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_DOWNL_SEG
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

Data block for Request and Indication:

Data structure T_DOM_REQ

T_ACC_SPEC acc_spec access spec. (--> 7.1.1)

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_DOWNL_SEG
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

Data block for Response and Confirmation:

result = POS:

Data structure T_DNL_UPL_SEG_CNF

PB_BOOL more_follows PB_TRUE / PB_FALSE (last segment)
USIGN8 data_len length of data field in octets
USIGN8 data[data_len] data field

result = NEG:

Data structure T_ERROR standard error structure

 PROFIBUS Application Program Interface

Page: 62 PROFIBUS

7.1.3 Terminate-Download-Sequence

This service terminates a download sequence. It is initiated by the station which has the Domain as object.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_TERM_DOWNL_SEQ
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

Data block for Request and Indication:

Data structure T_TERM_DNL_REQ

T_ACC_SPEC acc_spec access spec. (--> 7.1.1)
PB_BOOL final_result PB_TRUE / PB_FALSE
USIGN8 dummy alignment byte

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_TERM_DOWNL_SEQ
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

Data block for Response and Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_ERROR standard error structure

FMS Services

User Manual Page: 63

7.1.4 Request-Domain-Download

A server uses the request domain download service to let the client know that a download should be
executed. A positive response to this service is sent off only once the entire download sequence has been
completed.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_REQ_DOM_DOWNL
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

Data block for Request and Indication:

Data structure T_REQUEST_DOM_REQ

T_ACC_SPEC acc_spec access spec. (--> 7.1.1)
USIGN8 dummy not used
USIGN8 add_info_length length of additional info in octets
STRINGV add_info[add_info_length] additional info

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_REQ_DOM_DOWNL
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

Data block for Response and Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_ERROR standard error structure

 PROFIBUS Application Program Interface

Page: 64 PROFIBUS

7.2 UPLOAD SERVICES

The upload services are used for transferring data from server to client. In contrast to the download services,
each of these services is initiated by the client, that is to say from the station which requests the Domain
data but does not have the Domain as object.

7.2.1 Initiate-Upload-Sequence

The INITIATE-UPLOAD-SEQUENCE service initiates uploading and lets the server know the index or name
of the Domain to be transferred.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_INIT_UPL_SEQ
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

Data block for Request and Indication:

Data structure T_DOM_REQ

T_ACC_SPEC acc_spec access specification

Data structure T_ACC_SPEC

USIGN8 tag access mode 1)
USIGN8 dummy alignment byte

union
{
USIGN16 index index of domain
STRINGV name[MAX_ACCESS_NAME_LENGTH] symbolic name of domain
} id

1) ACCESS_INDEX 0 access by index
 ACCESS_NAME 1 access by symbolic name

FMS Services

User Manual Page: 65

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_INIT_UPL_SEQ
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

Data block for Response and Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_ERROR standard error structure

 PROFIBUS Application Program Interface

Page: 66 PROFIBUS

7.2.2 Upload-Segment

The UPLOAD-SEGMENT service is used to transfer the data of a Domain from server to client, segment by
segment.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_UPL_SEG
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

Data block for Request and Indication:

Data structure T_DOM_REQ

T_ACC_SPEC acc_spec access spec. (--> 7.2.1)

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_UPL_SEG
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

Data block for Response and Confirmation:

result = POS:

Data structure T_DNL_UPL_SEG_CNF

PB_BOOL more_follows PB_TRUE / PB_FALSE (last segment)
USIGN8 data_len length of data field in octets
USIGN8 data[data_len] data field

result = NEG:

Data structure T_ERROR standard error structure

FMS Services

User Manual Page: 67

7.2.3 Terminate-Upload-Sequence

Terminates the uploading process.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_TERM_UPL_SEQ
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

Data block for Request and Indication:

Data structure T_DOM_REQ

T_ACC_SPEC acc_spec access spec. (--> 7.2.1)

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_TERM_UPL_SEQ
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

Data block for Response and Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_ERROR standard error structure

 PROFIBUS Application Program Interface

Page: 68 PROFIBUS

7.2.4 Request-Domain-Upload

The server uses the REQUEST-DOMAIN-UPLOAD service to request an upload from a client. A positive
response for this service is sent off only once the entire upload sequence has been completed.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_REQ_DOM_UPL
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

Data block for Request and Indication:

Data structure T_REQUEST_DOM_REQ

T_ACC_SPEC acc_spec access spec. (--> 7.2.1)
USIGN8 dummy alignment byte
USIGN8 add_info_length length of additional info in octets
STRINGV add_info[add_info_length] additional info

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_REQ_DOM_UPL
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

Data block for Response and Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_ERROR standard error structure

FMS Services

User Manual Page: 69

7.3 GENERIC-DOWNLOAD SERVICES

The generic download services are used to load data from the client into the server´s Domain. These
services can be used for Master-Master and Master-Slave communication relationships. In difference to the
standard DOWNLOAD service, the client has always the initiative for the service invocations.

7.3.1 Generic-Initiate-Download-Sequence

The GENERIC-INITIATE-DOWNLOAD-SEQUENCE service initializes the download and lets the server
know the index or name of the Domain to be loaded.

Service-Description-Block for Request and Indication:
USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_GEN_INIT_DOWNL_SEQ
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

Data block for Request and Indication:

Data structure T_DOM_REQ

T_ACC_SPEC acc_spec access specification

Data structure T_ACC_SPEC

USIGN8 tag access mode 1)
USIGN8 dummy alignment byte

union
{
USIGN16 index index of domain
STRINGV name[MAX_ACCESS_NAME_LENGTH] symbolic name of domain
} id

1) ACCESS_INDEX 0 access by index
 ACCESS_NAME 1 access by symbolic name

 PROFIBUS Application Program Interface

Page: 70 PROFIBUS

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_GEN_INIT_DOWNL_SEQ
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

Data block for Response and Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_ERROR standard error structure

FMS Services

User Manual Page: 71

7.3.2 Generic-Download-Segment

The generic download segment service is used to transfer one data segment into the server´s domain. The
data segment is transmitted in the service request. The client station requests all segments of the domain in
sequence and sets the more_follows attribute to PB_TRUE. In the last request the more_follows attribute
has to be set to PB_FALSE. Segmentation must be done by the application.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_GEN_DOWNL_SEG
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

Data block for Request and Indication:

Data structure T_GEN_DNL_SEG_REQ

T_ACC_SPEC acc_spec access spec. (--> 7.3.1)
PB_BOOL more_follows PB_TRUE / PB_FALSE (last segment)
USIGN8 data_len length of data field in octets
USIGN8 data[data_len] data field

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_GEN_DOWNL_SEG
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

Data block for Response and Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_ERROR standard error structure

 PROFIBUS Application Program Interface

Page: 72 PROFIBUS

7.3.3 Generic-Terminate-Download-Sequence

This service terminates a generic download sequence and is initiated by the client station.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_GEN_TERM_DOWNL_SEQ
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

Data block for Request and Indication:

Data structure T_DOM_REQ

T_ACC_SPEC acc_spec access spec. (--> 7.3.1)

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_GEN_TERM_DOWNL_SEQ
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

Data block for Response and Confirmation:

result = POS:

Data structure T_GEN_TERM_DNL_CNF

 PB_BOOL final_result final result (PB_TRUE / PB_FALSE))
 USIGN8 dummy alignment byte

result = NEG:

Data structure T_ERROR standard error structure

FMS Services

User Manual Page: 73

8 PROGRAM-INVOCATION-MANAGEMENT SERVICES

8.1 CREATE-PROGRAM-INVOCATION

This service is used to take Domains which have already been defined in the Object Dictionary and combine
them into a program which is then defined in the Dynamic Program Invocation Dictionary as an executable
program. It is assumed that the first Domain in the index list contains an executable program.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_PI_CREATE
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

Data block for Request and Indication:

Data structure T_PI_CR8_REQ

T_ACCESS access access rights
USIGN8 cnt_dom number of domains
PB_BOOL reusable PB_TRUE = pi is reusable
USIGN16 index index of pi (in indication only!)
STRINGV name[MAX_OBJECT_NAME_LENGTH] symbolic name
USIGN8 extension[MAX_EXTENSION_LENGTH] extension
T_DYN_ACC_SPEC dom_list[cnt_dom] list of domains

Data structure T_ACCESS

USIGN8 pass_word password
USIGN8 acc_groups access groups
USIGN16 acc_right access rights

Data structure T_DYN_ACC_SPEC

USIGN8 tag access mode 1)
USIGN8 length length of access specification
USIGN8 acc_spec[length] access specification (index or name)

1) DYN_ACCESS_INDEX 3 access by index
 DYN_ACCESS_NAME 4 access by symbolic name

 PROFIBUS Application Program Interface

Page: 74 PROFIBUS

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_PI_CREATE
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

Data block for Response and Confirmation:

result = POS:

Data structure T_PI_CR8_CNF

USIGN16 index index of pi

result = NEG:

Data structure T_ERROR standard error structure

FMS Services

User Manual Page: 75

8.2 DELETE-PROGRAM-INVOCATION

The DELETE-PROGRAM-INVOCATION service deletes a Program Invocation from the Dynamic Program
Invocation Dictionary.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_PI_DELETE
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

Data block for Request and Indication:

Data structure T_PI_DEL_REQ

T_ACC_SPEC acc_spec access specification

Data structure T_ACC_SPEC

USIGN8 tag access mode 1)
USIGN8 dummy alignment byte
union
{
USIGN16 index index of pi
STRINGV name[MAX_ACCESS_NAME_LENGTH] symbolic name of pi
} id

1) ACCESS_INDEX 0 access by index
 ACCESS_NAME 1 access by symbolic name

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_PI_DELETE
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

 PROFIBUS Application Program Interface

Page: 76 PROFIBUS

Data block for Response and Confirmation:
result = POS:

n/a

result = NEG:

Data structure T_ERROR standard error structure

FMS Services

User Manual Page: 77

8.3 START-PROGRAM-INVOCATION

Used to start up a program.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_PI_START
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

Data block for Request and Indication:

Data structure T_PI_START_REQ

T_ACC_SPEC acc_spec access spec. (--> 8.2)
USIGN8 exec_arg[MAX_EXECUTION_ARGUMENT_LENGTH] execution argument1)

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_PI_START
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

Data block for Response and Confirmation:
result = POS:

n/a

result = NEG:

Data structure T_PI_ERROR

T_ERROR error standard error structure
USIGN8 pi_state state of pi
USIGN8 dummy alignment byte

1) The content of the parameter exec_arg will be transfered as Octet-String. Byte 0 of the parameter
exec_arg contains length of the execution argument.

 PROFIBUS Application Program Interface

Page: 78 PROFIBUS

8.4 STOP-PROGRAM-INVOCATION

A running program is halted but not reset to the beginning.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_PI_STOP
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

Data block for Request and Indication:

Data structure T_PI_STOP_REQ

T_ACC_SPEC acc_spec access specification (--> 8.2)

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_PI_STOP
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

Data block for Response and Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_PI_ERROR

T_ERROR error standard error structure
USIGN8 pi_state state of pi
USIGN8 dummy alignment byte

FMS Services

User Manual Page: 79

8.5 RESUME-PROGRAM-INVOCATION

A halted program is restarted but not reset to the beginning.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_PI_RESUME
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

Data block for Request and Indication:

Data structure T_PI_RESUME_REQ

T_ACC_SPEC acc_spec access spec. (--> 8.2)
USIGN8 exec_arg[MAX_EXECUTION_ARGUMENT_LENGTH] execution argument 1)

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_PI_RESUME
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

Data block for Response and Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_PI_ERROR

T_ERROR error standard error structure
USIGN8 pi_state state of pi
USIGN8 dummy alignment byte

1) The content of the parameter exec_arg will be transfered as Octet-String. Byte 0 of the parameter
exec_arg contains length of the execution argument.

 PROFIBUS Application Program Interface

Page: 80 PROFIBUS

8.6 RESET-PROGRAM-INVOCATION

A stopped program is reset to its beginning.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_PI_RESET
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

Data block for Request and Indication:

Data structure T_PI_RESET_REQ

T_ACC_SPEC acc_spec access specification (--> 8.2)

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_PI_RESET
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

Data block for Response and Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_PI_ERROR

T_ERROR error standard error structure
USIGN8 pi_state state of pi
USIGN8 dummy alignment byte

FMS Services

User Manual Page: 81

8.7 KILL-PROGRAM-INVOCATION

A Program Invocation is aborted, irrespective of its state. The aborted Program Invocation cannot be used
again, it can only be deleted.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_PI_KILL
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

Data block for Request and Indication:

Data structure T_PI_KILL_REQ

T_ACC_SPEC acc_spec access specification (--> 8.2)

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_PI_KILL
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

Data block for Response and Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_ERROR standard error structure

 PROFIBUS Application Program Interface

Page: 82 PROFIBUS

8.8 PI-SET-STATE-LOC

This service is used to adapt the state of the PI-object within the local OD to the state of the real (program)
object.

The available states are: UNRUNNABLE, IDLE, RUNNING and STOPPED. The following table shows the
states to be accepted depending on the old state. The PI-SET-STATE-LOC service is rejected with a
negative confirmation if the state of the PI object is an intermediate state (because a remote service already
executed).

Old State New State Condition
IDLE RUNNING

UNRUNNABLE
PI locally started
PI locally aborted

RUNNING IDLE
STOPPED
UNRUNNABLE

"reusable" PI reached end of
program
PI locally stopped
PI locally aborted or reached end
of program, but is not "reusable"

STOPPED RUNNING
IDLE
UNRUNNABLE

PI locally resumed
"reusable" PI locally reset
PI locally aborted or locally reset,
but is not "reusable

Service-Description-Block for Request:

USIGN16 comm_ref not used
USIGN8 layer FMS
USIGN8 service FMS_PI_SET_STATE_LOC
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result POS

Data block for Request:

Data structure T_PI_SET_STATE_REQ

USIGN32 vfd_number vfd number
T_ACC_SPEC acc_spec access specification (--> 8.2)
USIGN8 state new PI state
USIGN8 dummy alignment byte

FMS Services

User Manual Page: 83

Service-Description-Block for Confirmation:

USIGN16 comm_ref not used
USIGN8 layer FMS_USR
USIGN8 service FMS_PI_SET_STATE_LOC
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS / NEG

Data block for Confirmation:

result = POS:

Data structure T_PI_SET_STATE_CNF

USIGN32 vfd_number vfd number

result = NEG:

Data structure T_PI_LOC_ERROR

T_ERROR error standard error structure
USIGN8 pi_state state of PI
USIGN8 dummy alignment byte
USIGN32 vfd number vfd number

 PROFIBUS Application Program Interface

Page: 84 PROFIBUS

9 EVENT-MANAGEMENT SERVICES

9.1 EVENT-NOTIFICATION

The EVENT-NOTIFICATION service allows an event notification to be sent. This service is not
acknowledged by the communication partner.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_EVN_NOTIFY
USIGN8 primitive REQ / IND
INT8 invoke_id not used
INT16 result POS

Data block for Request and Indication:

Data structure T_EVENT_NOTIFY_REQ

USIGN8 priority LOW / HIGH
USIGN8 event_number event count
T_ACC_SPEC acc_spec access specification
USIGN8 dummy alignment byte
USIGN8 data_length length of data field in octets
USIGN8 event_data[data_length] data field

Data structure T_ACC_SPEC

USIGN8 tag access mode 1)
USIGN8 dummy alignment byte
union
{
USIGN16 index index of event object
STRINGV name[MAX_ACCESS_NAME_LENGTH] symbolic name of event object
} id

1) ACCESS_INDEX 0 access by index
 ACCESS_NAME 1 access by symbolic name

FMS Services

User Manual Page: 85

9.2 EVENT-NOTIFICATION-WITH-TYPE

The EVENT-NOTIFICATION-WITH-TYPE service allows an event notification to be sent. The event
notification contains data and their data type description. This service is not acknowledged by the
communication partner.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_EVN_NOTIFY_WITH_TYPE
USIGN8 primitive REQ / IND
INT8 invoke_id not used
INT16 result POS

Data block for Request and Indication:

Data structure T_TYPE_DESCR

USIGN8 tag type description identifier 1)
USIGN8 dummy alignment byte
union
{

Data structure T_EVENT_NOTIFY_WITH_TYPE_REQ

USIGN8 priority LOW / HIGH
USIGN8 event_number event count
T_ACC_SPEC acc_spec access specification (--> 9.1)
T_TYPE_DESCR type_descr type description
USIGN8 dummy alignment byte
USIGN8 data_length length of data field in octets
USIGN8 event_data[data_length] data field

T_SIMPLE_TYPE simple; simple type
T_ARRAY_TYPE array; array type
T_RECORD_TYPE record; record type
} id

1) SIMPLE_TYPE 1
 ARRAY_TYPE 2
 RECORD_TYPE 3

 PROFIBUS Application Program Interface

Page: 86 PROFIBUS

Data structure T_SIMPLE_TYPE

USIGN16 data_type_index index of data type
USIGN8 length size of data type
USIGN8 dummy alignment byte

Data structure T_ARRAY_TYPE

USIGN16 data_type_index index of data type
USIGN8 length size of data type
USIGN8 no_of_elements number of data types

Data structure T_RECORD_TYPE

USIGN8 no_of_elements number of record elements
USIGN8 dummy alignment byte
T_SIMPLE_TYPE simple[MAX_VAR_RECORD_ELEMENTS] list of simple types

FMS Services

User Manual Page: 87

9.3 ACKNOWLEDGE-EVENT-NOTIFICATION

This service may be used to acknowledge an Event Notification.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_ACK_EVN_NOTIFY
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

Data block for Request and Indication:

Data structure T_ACK_EVN_NOTIFY_REQ

T_ACC_SPEC acc_spec access specification (--> 9.1)
USIGN8 event_number event count
USIGN8 dummy alignment byte

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_ACK_EVN_NOTIFY
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

Data block for Response and Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_ERROR standard error structure

 PROFIBUS Application Program Interface

Page: 88 PROFIBUS

9.4 ALTER-EVENT-CONDITION-MONITORING

The ALTER-EVENT-CONDITION-MONITORING service enables modification (releasing or locking) of event
conditions.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_ALT_EVN_CND_MNT
USIGN8 primitive REQ / IND
INT8 invoke_id 0..127
INT16 result POS

Data block for Request and Indication:

Data structure T_ALT_EVN_CND_MNT_REQ

T_ACC_SPEC acc_spec access specification (--> 9.1)
PB_BOOL enabled enable or disable the event
USIGN8 dummy alignment byte

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 2..MAX_COMREF
USIGN8 layer FMS / FMS_USR
USIGN8 service FMS_ALT_EVN_CND_MNT
USIGN8 primitive RES / CON
INT8 invoke_id 0..127
INT16 result POS / NEG

Data block for Response and Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_ERROR standard error structure

FMS Services

User Manual Page: 89

APPENDIX A

ERROR STRUCTURE AND ERROR CODES

Data structure: T_ERROR

USIGN16 class_code error class and error code
INT16 add_detail additional detail
STRINGV add_description[MAX_ERROR_DESCR_LENGTH] additional description

The 16 bit class_code parameter contains the error class in the high byte and the error code in the low byte.

 class_ error error meaning
 code class code class error

E_FMS_INIT_OTHER 0x0000 0 0 Initiate Other
E_FMS_INIT_MAX_PDU_SIZE_INSUFF 0x0001 0 1 Max_PDU-Size-insufficient
E_FMS_INIT_FEAT_NOT_SUPPORTED 0x0002 0 2 Feature-Not-Supported
E_FMS_INIT_OD_VERSION_INCOMP 0x0003 0 3 Version-OD-Incompatible
E_FMS_INIT_USER_DENIED 0x0004 0 4 User-Initiate-Denied
E_FMS_INIT_PASSWORD_ERROR 0x0005 0 5 Password-Error
E_FMS_INIT_PROFILE_NUMB_INCOMP 0x0006 0 6 Profile-Number-Incompatible

E_FMS_VFD_STATE_OTHER 0x0100 1 0 VFD-State Other

E_FMS_APPLICATION_OTHER 0x0200 2 0 Application Other
E_FMS_APPLICATION_UNREACHABLE 0x0201 2 1 Unreachable

E_FMS_DEF_OTHER 0x0300 3 0 Definition Other
E_FMS_DEF_OBJ_UNDEF 0x0301 3 1 Object-Undefined
E_FMS_DEF_OBJ_ATTR_INCONSIST 0x0302 3 2 Object-Attributes-Inconsistent
E_FMS_DEF_OBJECT_ALREADY_EXISTS 0x0303 3 3 Object-Already-Exists

E_FMS_RESOURCE_OTHER 0x0400 4 0 Resource Other
E_FMS_RESOURCE_MEM_UNAVAILABLE 0x0401 4 1 Memory-Unavailable

E_FMS_SERV_OTHER 0x0500 5 0 Service Other
E_FMS_SERV_OBJ_STATE_CONFLICT 0x0501 5 1 Object-State-Conflict
E_FMS_SERV_PDU_SIZE 0x0502 5 2 PDU-Size
E_FMS_SERV_OBJ_CONSTR_CONFLICT 0x0503 5 3 Object-Constraint-Conflict
E_FMS_SERV_PARAM_INCONSIST 0x0504 5 4 Parameter-Inconsistent
E_FMS_SERV_ILLEGAL_PARAM 0x0505 5 5 Illegal-Parameter

E_FMS_ACCESS_OTHER 0x0600 6 0 Access Other
E_FMS_ACCESS_OBJ_INVALIDATED 0x0601 6 1 Object-Invalidated
E_FMS_ACCESS_HARDWARE_FAULT 0x0602 6 2 Hardware-Fault
E_FMS_ACCESS_OBJ_ACCESS_DENIED 0x0603 6 3 Object-Access-Denied
E_FMS_ACCESS_ADDR_INVALID 0x0604 6 4 Invalid-Address
E_FMS_ACCESS_OBJ_ATTR_INCONST 0x0605 6 5 Object-Attribute-Inconsistent
E_FMS_ACCESS_OBJ_ACCESS_UNSUPP 0x0606 6 6 Object-Access-Unsupported
E_FMS_ACCESS_OBJ_NON_EXIST 0x0607 6 7 Object-Non-Exist
E_FMS_ACCESS_TYPE_CONFLICT 0x0608 6 8 Type-Conflict
E_FMS_ACCESS_NAME_ACCESS_UNSUP 0x0609 6 9 Name-Access-Unsupported

E_FMS_OD_OTHER 0x0700 7 0 OD Other
E_FMS_OD_NAME_LEN_ODERFLOW 0x0701 7 1 Name-Length-Overflow
E_FMS_OD_ODERFLOW 0x0702 7 2 OD-Overflow
E_FMS_OD_WRITE_PROTECT 0x0703 7 3 OD-Write-Protected
E_FMS_OD_EXTENSION_LEN_ODERFLOW 0x0704 7 4 Extension-Length-Overflow
E_FMS_OD_OBJ_DESCR_ODERFLOW 0x0705 7 5 OD-Descr-Length-Overflow
E_FMS_OD_OPERAT_PROBLEM 0x0706 7 6 Operational-Problem

E_FMS_OTHER 0x0800 8 0 Other Other

 PROFIBUS Application Program Interface

Page: 90 PROFIBUS

INDEX

Abort Codes, 8
Abort Identifiers, 8
Access Mode, 26; 37
Access Protection, 38
Array, 35
Client, 8; 55
Communication Relationship List, 12
Data Type Description, 33
Data Type Structures, 34
Domain, 36; 55
Download, 55
Dynamic Program Invocation Dictionary, 32; 69
Dynamic Variable List Dictionary, 32
Event, 36; 80
Generic Download, 65
Null Object, 32
Object Codes, 38
Object Description, 18; 23; 25
Object Dictionary, 12; 18; 23; 25
Object Dictionary Header, 32
Physical Status, 14
Predefined Data Types, 33
Program Invocation, 36; 69
Record, 35
Server, 8; 55
Simple Variable, 34
Static Object Dictionary, 32
Static Type Dictionary, 32
Subindex, 40; 44
Upload, 60
Variable List, 35

PROFIBUS Application Program Interface

FM7 Services

Version 5.2
Rev. 00

Date: 17-October-1997

Softing AG
Richard-Reitzner-Allee 6
D-85540 Haar
Phone (++49) 89 45 65 6 - 0
Fax (++49) 89 45 65 6 - 399

 Copyright by Softing AG, 1989-2003
All rights reserved.

PROFIBUS User Manual

PROFIBUS Application Program Interface

Copyright Notice

All rights are reserved. No part of these instructions may be reproduced (printed material,
photocopies, microfilm or other method) or processed, copied or distributed using electronic
systems in any form whatsoever without prior written permission of Softing AG.

The producer reserves the right to make changes to the scope of supply as well as changes to
technical data, even without prior notice.

A great deal of attention was made to the quality and functional integrity in designing,
manufacturing and testing the system. However, no liability can be assumed for potential errors
that might exist or for their effects. Should you find errors please inform your distributor of the
nature of the errors and the circumstances under which they occur. We will be responsive to all
reasonable ideas and will follow up on them, taking measures to improve the product if
necessary.

We call your attention to the fact that the company name and trademark as well as product
names are, as a rule, protected by trademark, patent and product brand laws.

Copyright 1989-2003 by Softing AG, Haar

FM7 Services

User Manual Page: I

CONTENTS

1 SCOPE ...1

2 OVERVIEW ..2

3 LOCAL FM7 SERVICES ..5

3.1 Set-Value-Loc Services...5
3.1.1 Set-Busparameter..6
3.1.2 Set-Value-Loc ..8

3.2 Read-Value-Loc Services ...9
3.2.1 Read-Busparameter ..9
3.2.2 Read-Value-Loc...11

3.3 Loading the Communication Relationship List..13
3.3.1 Initiate-Load-CRL-Loc..14
3.3.2 Load-CRL-Loc..15
3.3.3 Terminate-Load-CRL-Loc ..17

3.4 Read-CRL-Loc ..18
3.5 LSAP-Status-Loc...20
3.6 Ident-Loc ...22
3.7 Get-Live-List ..24
3.8 FM7-Reset...26
3.9 FM7-Event...27
3.10 FM7-Exit ..29

4 REMOTE SERVICES...30

4.1 FM7-Initiate ...31
4.2 FM7-Abort ...33
4.3 Load-CRL-Rem services...36

4.3.1 Initiate-Load-CRL-Rem..37
4.3.2 Load-CRL-Rem..38
4.3.3 Terminate-Load-CRL-Rem ..40

4.4 Read-CRL-Rem ..41
4.5 Set-Value-Rem..43
4.6 Read-Value-Rem ..45
4.7 LSAP-Status-Rem...47
4.8 Ident-Rem..49

PROFIBUS Application Program Interface

Page: II PROFIBUS

5 FM7 CONFIGURATION / COMMUNICATION RELATIONSHIP LIST (CRL)... 51

5.1 CRL Header.. 51
5.2 CRL Entry ... 53

APPENDIX A ... 60

ERROR STRUCTURE AND ERROR CODES.. 60

INDEX.. 61

FM7 Services

User Manual Page: 1

1 SCOPE

This manual describes the services of local and remote Fieldbus Management Layer 7 (FM7).

The FM7 is part of the Fieldbus Application Layer (FAL). FM7 services provide access to local and remote
management objects.

Softing's PROFIBUS Application Layer Interface provides uniform access to all service groups of the
PROFIBUS protocol. The common access functions are described in the "User Interface" part of the
PROFIBUS User Manual.

This document describes the specific constants, parameters and data structures of all FM7 services.

The FM7-specific types and constants are defined in the include file PB_FM7.H.

PROFIBUS API

FMB
LLI

remote
FM7local

FM7

FDLIF

FDL

FMS

FAL

FM2

DP /
DP/V1

This document should be read in conjunction with the following parts of the PROFIBUS User Manual:

• "User Interface" (describes the uniform access functions to all PROFIBUS services)

• "Basic Management" (describes the management services common to all protocol components)

 PROFIBUS Application Program Interface

Page: 2 PROFIBUS

2 OVERVIEW

The FM7 provides two groups of services. Local FM7 services are used to access local management
objects, whereas remote FM7 services carry out management functions over the network and manipulate
management objects in remote devices.

Chapter 3 of this document describes the local management services. The remote management services
are described in chapter 4. In chapter 5, structure and attributes of the Communication Relationship List
(CRL) are described.

General remarks on FM7 services:

- A parallel execution of FM7 services is not possible

- Each device that supports FM7 remote services as server must have a default management
connection. This connection is registered in the CRL under communication reference 1. The
configuration of the default management connection is specified in EN 50170/2 (FM7).

FM7 Services

User Manual Page: 3

Overview of FM7 Services

Local Management

Service group Identifier Code Page

Set and read FDL bus parameters FM7_SET_BUSPARAMETER 22 6
 FM7_READ_BUSPARAMETER 24 9

Load and read the CRL FM7_READ_CRL_LOC 11 18
 FM7_INIT_LOAD_CRL_LOC 12 14
 FM7_LOAD_CRL_LOC 13 15
 FM7_TERM_LOAD_CRL_LOC 14 17

Set and read a single FDL parameter FM7_SET_VALUE_LOC 15 8
 FM7_READ_VALUE_LOC 16 11

Read status of FDL SAP FM7_LSAP_STATUS_LOC 17 20

Read identification FM7_IDENT_LOC 18 22

Read Live-List FM7_GET_LIVE_LIST 26 24

Event indications from FM2 and LLI FM7_EVENT 19 27

Reset FAL FM7_EXIT 21 29
 FM7_RESET 20 26

Remote Management

Service group Identifier Code Page

FM7 context management FM7_INITIATE 0 31
 FM7_ABORT 38 33

Load and read the CRL FM7_READ_CRL_REM 1 41
 FM7_INIT_LOAD_CRL_REM 2 37
 FM7_LOAD_CRL_REM 3 38
 FM7_TERM_LOAD_CRL_REM 4 40

Set and read a single FDL parameter FM7_SET_VALUE_REM 5 43
 FM7_READ_VALUE_REM 6 45

Read status of FDL SAP FM7_LSAP_STATUS_REM 7 47

Read identification FM7_IDENT_REM 8 49

 PROFIBUS Application Program Interface

Page: 4 PROFIBUS

Notes on Data Structures and Parameters

The FM7-specific types and constants are defined in the include file PB_FM7.H.

All words, long-words, strings, arrays and records begin on even addresses. To accomplish this, fill bytes
had to be added in some places. They are always recognizable by the name dummy.

Data blocks do not contain pointers. If a data block contains one or more fields or lists of variable length,
then the length information of all variable-length fields is stored in the constant part. The fields of variable
length follow on the constant part.

Here is an example of such a data block:

constant parameters

field length

variable field

The variable data fields are shown between comment delimiters in the include file PB_FM7.H to show their
position and structure, without forcing the programmer to use data structures of a specific length.
Nevertheless, the data must be entered at exactly this spot.

The request and indication data blocks as well as the response and confirmation data blocks are identical.

The service description block contains a result parameter. If a function returns as positive (result = POS) the
service-specific confirmation block will be passed. If the result is negative (result = NEG), then the standard
error structure T_ERROR or a service-specific error structure is passed. Only the initiate service passes a
confirmation block even when the result of the function is negative.

If a variable should be transferred to a remote station within a variable length field, the variable has to be
given in Motorola format (high order bytes first).

For all parameters of data type STRINGV (visible string), byte 0 must contain the length of the character
string. (PROFIBUS standard).

As the standard error structure is possible for many services, it is not always noted explicitly. Its structure
and the error codes are described in appendix A.

FM7 Services

User Manual Page: 5

3 LOCAL FM7 SERVICES

This chapter describes the services of local FM7.

3.1 Set-Value-Loc Services

The PROFIBUS API provides two services to set the FDL operational parameters:

- Set-Busparameters

- Set-Value-Loc

 PROFIBUS Application Program Interface

Page: 6 PROFIBUS

3.1.1 Set-Busparameter

This service is used to set all FDL operational parameters that are necessary to start the FDL. This set of
operational parameters is called FDL bus parameters.

Notes:

- In future releases of SOFTING's PROFIBUS API, the service Set-Busparameter will be replaced by
service FMB-Set-Busparameter. Set-Busparameter is supported only for compability with former
releases of PROFIBUS API. Do not use this service in new applications.

- The FDL bus parameters are described in the FMB manual.

Service-Description-Block for Request:

USIGN16 comm_ref not used
USIGN8 layer FM7
USIGN8 service FM7_SET_BUSPARAMETER
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result POS

Data block for Request:

Data structure T_SET_BUSPARAMETER_REQ

USIGN8 loc_add local station address
USIGN8 loc_segm local segment
USIGN8 baud_rate baud rate
USIGN8 medium_red medium redundancy
USIGN16 tsl slot time
USIGN16 min_tsdr min. station delay time resp.
USIGN16 max_tsdr max. station delay time resp.
USIGN8 tqui quiet time
USIGN8 tset setup time
USIGN32 ttr target token rotation time
USIGN8 g gap update factor
PB_BOOL in_ring_desired active or passive station
USIGN8 hsa highest station address
USIGN8 max_retry_limit max. retry limit
USIGN16 reserved for internal use
USIGN8 ident[202] ident

The parameter ident is set by the communication software. For compatibility with former releases the
component ident remains part of the data structure.

FM7 Services

User Manual Page: 7

Service-Description-Block for Confirmation:

USIGN16 comm_ref not used
USIGN8 layer FM7_USR
USIGN8 service FM7_SET_BUSPARAMETER
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS / NEG

Data block for Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_ERROR standard error structure

 PROFIBUS Application Program Interface

Page: 8 PROFIBUS

3.1.2 Set-Value-Loc

The Set-Value-Loc service is used to set a single FDL operational parameter.

Service-Description-Block for Request:

USIGN16 comm_ref not used
USIGN8 layer FM7
USIGN8 service FM7_SET_VALUE_LOC
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result POS

Data block for Request:

Data structure T_SET_VALUE_REQ

USIGN8 id value identifier
USIGN8 length length of value field
USIGN8 value[length] value

Parameter identifiers:

FDL-operational parameters which can be changed:

ID_BAUD_RATE 2 Baud rate
ID_TSL 6 Slot-Time
ID_MIN_TSDR 7 Minimum Station Delay Time
ID_MAX_TSDR 8 Maximum Station Delay Time
ID_TQUI 9 Time out
ID_TSET 10 Setup Time
ID_TTR 11 Target Rotation Time
ID_G 12 GAP-Update-Factor
ID_MAX_RETRY_LIMIT 15 Max. # of repetitions in case of transmit error

Service-Description-Block for Confirmation:

USIGN16 comm_ref not used
USIGN8 layer FM7_USR
USIGN8 service FM7_SET_VALUE_LOC
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS / NEG

Data block for Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_ERROR standard error structure

FM7 Services

User Manual Page: 9

3.2 Read-Value-Loc Services

The PROFIBUS API offers two services to read the FDL operational parameters:

- Read-Busparameter

- Read-Value-Loc

3.2.1 Read-Busparameter

The Read-Busparameter service is used to read the FDL bus parameters.

Notes:

- In future releases of SOFTING's PROFIBUS API, the service Read-Busparameter will be replaced
by service FMB-Read-Busparameter. Read-Busparameter is supported only for compability with
former releases of PROFIBUS API. Do not use this service in new applications.

- The FDL bus parameters are described in the FMB manual.

Service-Description-Block for Request:

USIGN16 comm_ref not used
USIGN8 layer FM7
USIGN8 service FM7_READ_BUSPARAMETER
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result POS

Data block for Request:

n/a

 PROFIBUS Application Program Interface

Page: 10 PROFIBUS

Service-Description-Block for Confirmation:

USIGN16 comm_ref not used
USIGN8 layer FM7_USR
USIGN8 service FM7_READ_BUSPARAMETER
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS / NEG

Data block for Confirmation:

result = POS:

Data structure T_READ_BUSPARAMETER_CNF

USIGN8 loc_add local station address
USIGN8 loc_segm local segment
USIGN8 baud_rate baud rate
USIGN8 medium_red medium redundancy
USIGN16 tsl slot time
USIGN16 min_tsdr min. station delay time resp.
USIGN16 max_tsdr max. station delay time resp.
USIGN8 tqui quiet time
USIGN8 tset setup time
USIGN32 ttr target token rotation time
USIGN8 g gap update factor
PB_BOOL in_ring_desired active or passive station
USIGN8 hsa highest station address
USIGN8 max_retry_limit max. retry limit
USIGN16 reserved not used
USIGN8 ident[202] FDL ident string

result = NEG:

Data structure T_ERROR standard error structure

FM7 Services

User Manual Page: 11

3.2.2 Read-Value-Loc

The Read-Value-Loc service allows a single FDL operational parameter to be selected.

Service-Description-Block for Request:

USIGN16 comm_ref not used
USIGN8 layer FM7
USIGN8 service FM7_READ_VALUE_LOC
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result POS

Data block for Request:

Data structure T_READ_VALUE_REQ

USIGN8 id value identifier
USIGN8 dummy alignment byte

Parameter identifiers:

FDL operational parameters:

ID_TS 1 Station address
ID_BAUD_RATE 2 Baudrate
ID_MEDIUM_RED 3 Redundancy
ID_HW_RELEASE 4 Hardware release
ID_SW_RELEASE 5 Software release
ID_TSL 6 Slot-Time
ID_MIN_TSDR 7 Minimum Station Delay Time
ID_MAX_TSDR 8 Maximum Station Delay Time
ID_TQUI 9 Time out
ID_TSET 10 Setup Time
ID_TTR 11 Target Rotation Time
ID_G 12 GAP-Update-Factor
ID_IN_RING_DESIRED 13 in ring desired
ID_HSA 14 Highest station address in local segment
ID_MAX_RETRY_LIMIT 15 Max. # of repetitions in case of transmit error
ID_LAS 17 List of active stations (LAS)

 PROFIBUS Application Program Interface

Page: 12 PROFIBUS

Service-Description-Block for Confirmation:
USIGN16 comm_ref not used
USIGN8 layer FM7_USR
USIGN8 service FM7_READ_VALUE_LOC
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS / NEG

Data block for Confirmation:

result = POS:

Data structure T_READ_VALUE_CNF

USIGN8 id value identifier
USIGN8 length length of value field
USIGN8 value[length] value

result = NEG:

Data structure T_ERROR standard error structure

LAS coding:

length 1..126 number of active stations
value[0] 0..126 1st station address
value[1] 0..126 2nd station address

value[n] 0..126 last station address

FM7 Services

User Manual Page: 13

3.3 Loading the Communication Relationship List

The CRL is loaded by a sequence of services: the sequence starts with the Initiate-Load-CRL-Loc service.
Once the Initiate-Load-CRL-Loc service has been executed, the CRL header and subsequently the CRL
entries are loaded using the Load-CRL-Loc service. The load sequence is concluded by the Terminate-
Load-CRL-Loc service.

If a CRL have been loaded successfully and a reloading is started by the Initiate-Load-CRL-Loc service, all
commnunication relationships except the default management connection are released. The
commnunication relationships stay locked until the Terminate-Load-CRL-Loc service was executed
successfully.

The FM7 does not test the CRL for consisitency but only for ability to be loaded. Before the CRL is loaded, it
should be checked for correctness and consistency by a configuration tool (e.g SOFTING's FMS
configurator).

 Structure and attributes of the Communication Relationship List (CRL) are described, in chapter 5.

 PROFIBUS Application Program Interface

Page: 14 PROFIBUS

3.3.1 Initiate-Load-CRL-Loc

This service initializes local CRL loading.

Service-Description-Block for Request:

USIGN16 comm_ref not used
USIGN8 layer FM7
USIGN8 service FM7_INIT_LOAD_CRL_LOC
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result POS

Data block for Request:

n/a

Service-Description-Block for Confirmation:

USIGN16 comm_ref not used
USIGN8 layer FM7_USR
USIGN8 service FM7_INIT_LOAD_CRL_LOC
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS / NEG

Data block for Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_ERROR standard error structure

FM7 Services

User Manual Page: 15

3.3.2 Load-CRL-Loc

The LOAD-CRL-LOC service loads the CRL header or the static part of a CRL entry. The CRL header is
loaded as a CRL entry with communication reference 0.

In order to load the entire CRL, the Load-CRL-Loc service must be called repeatedly. The CRL header is the
first entry to be loaded, The CRL entries have to be loaded in ascending sequential order.

Service-Description-Block for Request:

USIGN16 comm_ref not used
USIGN8 layer FM7
USIGN8 service FM7_LOAD_CRL_LOC
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result POS

Data block for Request:

Data structure T_LOAD_CRL_REQ

USIGN16 desired_cr communication reference to be loaded
union
{
 T_CRL_HDR crl_hdr header of CRL
 T_CRL_STATIC crl_static static entry of CRL
} id

Data structure T_CRL_HDR

INT16 nr_of_entries number of CRL entries
USIGN8 poll_sap local LSAP to be used for poll list
USIGN8 symbol_length max symbol length
USIGN32 ass_abt_ci ASS/ABT control interval
PB_BOOL vfd_pointer_supported multiple VFDs are supported
USIGN8 dummy alignment byte

 PROFIBUS Application Program Interface

Page: 16 PROFIBUS

Data structure T_CRL_STATIC

USIGN8 loc_lsap local LSAP
USIGN8 rem_add remote address
USIGN8 rem_segm remote segment
USIGN8 rem_lsap rem. LSAP
USIGN8 conn_type connection type
USIGN8 lli_sap LLI sap
USIGN8 multiplier multiplier on cyclic connections
USIGN8 conn_attr connection attribute
USIGN8 max_scc send confirmed counter
USIGN8 max_rcc receive confirmed counter
USIGN8 max_sac send acknowledge counter
USIGN8 max_rac receive acknowledge counter
USIGN32 ci control interval
USIGN8 max_pdu_snd_high max FMS/FM7 PDU length send high
USIGN8 max_pdu_snd_low max FMS/FM7 PDU length send low
USIGN8 max_pdu_rcv_high max FMS/FM7 PDU length receive high
USIGN8 max_pdu_rcv_low max FMS/FM7 PDU length receive low
USIGN8 feature_supp[FEAT_SUPP_LEN] supported features
STRINGV symbol[MAX_CRL_SYMBOL_LENGTH] symbolic name of CRL entry
USIGN32 vfd_pointer VFD number
USIGN8 extension[MAX_CRL_EXTENSION_LENGTH] CRL extension

 Structure and attributes of the Communication Relationship List (CRL) are described, in chapter 5.

Service-Description-Block for Confirmation:

USIGN16 comm_ref not used
USIGN8 layer FM7_USR
USIGN8 service FM7_LOAD_CRL_LOC
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS / NEG

Data block for Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_ERROR standard error structure

FM7 Services

User Manual Page: 17

3.3.3 Terminate-Load-CRL-Loc

The TERMINATE-LOAD-CRL-LOC service terminates the load sequence.

Service-Description-Block for Request:

USIGN16 comm_ref not used
USIGN8 layer FM7
USIGN8 service FM7_TERM_LOAD_CRL_LOC
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result POS

Data block for Request:

n/a

Service-Description-Block for Confirmation:

USIGN16 comm_ref not used
USIGN8 layer FM7_USR
USIGN8 service FM7_TERM_LOAD_CRL_LOC
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS / NEG

Data block for Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_CRL_ERROR

T_ERROR error standard error structure
USIGN16 error_cr faulty communication reference

 PROFIBUS Application Program Interface

Page: 18 PROFIBUS

3.4 Read-CRL-Loc

The Read-CRL-Loc service is used to read the CRL header or a CRL entry.

To read the CRL header, communication reference 0 must be specified.

To read a CRL entry, its communication reference must be specified. FM7 builds the CRL entry from the
FM7 and LLI CRL entries in the case of a management connection, and in case of a FMS connection it uses
the FMS and LLI CRL entries. If this communication reference is not available, then the response to the
service will indicate result = NEG. To read the entire CRL the READ-CRL-LOC service must be called
repeatedly.

Service-Description-Block for Request:

USIGN16 comm_ref not used
USIGN8 layer FM7
USIGN8 service FM7_READ_CRL_LOC
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result POS

Data block for Request:

Data structure T_READ_CRL_REQ

USIGN16 desired_cr desired communication reference

Service-Description-Block for Confirmation:

USIGN16 comm_ref not used
USIGN8 layer FM7_USR
USIGN8 service FM7_READ_CRL_LOC
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS / NEG

FM7 Services

User Manual Page: 19

Data block for Confirmation:

result = POS:

Data structure T_READ_CRL_CNF

USIGN16 desired_cr communication reference read
union
{
 T_CRL_HDR crl_hdr CRL header (--> 3.3.2)
 T_CRL_ENTRY crl_entry CRL entry
} id

Data structure T_CRL_ENTRY

T_CRL_STATIC crl_static static part of CRL entry (--> 3.3.2)
T_CRL_DYNAMIC crl_dynamic dynamic part of CRL entry
USIGN8 dummy alignment byte
USIGN8 crl_status_len length of status field of CRL entry
USIGN8 crl_status[crl_status_len] status field

Data structure T_CRL_DYNAMIC

USIGN8 rem_add current remote address
USIGN8 rem_segm current remote segment
USIGN8 rem_lsap current remote LSAP
USIGN8 scc send confirmed counter
USIGN8 rcc received confirmed counter
USIGN8 sac send acknowledged counter
USIGN8 rac received acknowledged counter
PB_BOOL poll_entry_enabled poll entry flag
USIGN8 master_role current master role
USIGN8 dummy alignment byte

result = NEG:

Data structure T_ERROR standard error structure

 Structure and attributes of the Communication Relationship List (CRL) are described, in chapter 5.

Status field construction and coding (contains the LLI state machine states) occurs in accordance with the
PROFIBUS specification EN 50170/2 (FM7). The construction depends on the type of communication
relationship and the number of parallel services. For a detailed description, see EN 50170/2 (FM7).

 PROFIBUS Application Program Interface

Page: 20 PROFIBUS

3.5 LSAP-Status-Loc

The LSAP-Status-Loc service is used to request the configuration of a FDL Service Access Point (SAP).

Service-Description-Block for Request:

USIGN16 comm_ref not used
USIGN8 layer FM7
USIGN8 service FM7_LSAP_STATUS_LOC
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result POS

Data block for Request:

Data structure T_LSAP_STATUS_REQ

USIGN8 lsap local sap
USIGN8 dummy alignment byte

Service-Description-Block for Confirmation:

USIGN16 comm_ref not used
USIGN8 layer FM7_USR
USIGN8 service FM7_LSAP_STATUS_LOC
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS / NEG

Data block for Confirmation:

result = POS:

Data structure T_LSAP_STATUS_CNF

USIGN8 access station address
USIGN8 addr_extension segment number
USIGN8 sda SDA service
USIGN8 sdn SDN service
USIGN8 srd SRD service
USIGN8 csrd CSRD service

result = NEG:

Data structure T_ERROR standard error structure

FM7 Services

User Manual Page: 21

Service coding:

Each service field (sda, sdn, srd, csrd) contains the arithmetic sum of the parameters "service" and the
"role_in_service":

service:

SDA_RESERVED 0x00 SDA service
SDN_RESERVED 0x01 SDN service
SRD_RESERVED 0x03 SRD service
CSRD_RESERVED 0x05 CSRD service

role_in_service:

INITIATOR 0x00 initiator role
RESPONDER 0x10 responder role
BOTH_ROLES 0x20 initiator / responder
SERVICE_NOT_ACTIVATED 0x30 service not activated

 PROFIBUS Application Program Interface

Page: 22 PROFIBUS

3.6 Ident-Loc

The Ident-Loc service alloew the FM7 user to request the manufacturer, the software and hardware releases
and the characteristics ot the PROFIBUS controller. The user may select the identification of FMS, FM7,
LLI, FDL or the station characteristics.

Service-Description-Block for Request:

USIGN16 comm_ref not used
USIGN8 layer FM7
USIGN8 service FM7_IDENT_LOC
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result POS

Data block for Request:

Data structure T_IDENT_REQ

USIGN8 instance_id instance identifier
USIGN8 dummy alignment byte

Instance Identifier:

ID_FM7 0 FM7
ID_FMS 1 FMS
ID_LLI 2 LLI
ID_FDL 3 FDL
ID_STATION 4 STATION and CHARACTERISTIC

Service-Description-Block for Confirmation:

USIGN16 comm_ref not used
USIGN8 layer FM7_USR
USIGN8 service FM7_IDENT_LOC
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS / NEG

FM7 Services

User Manual Page: 23

Data block for Confirmation:

result = POS:

Data structure T_IDENT_CNF

USIGN8 instance_id instance identifier
USIGN8 dummy alignment byte
STRINGV vendor_name[MAX_IDENT_STRING_LENGTH] vendor name
STRINGV controller_type[MAX_IDENT_STRING_LENGTH] controller type
STRINGV hw_release[MAX_IDENT_STRING_LENGTH] HW release
STRINGV sw_release[MAX_IDENT_STRING_LENGTH] SW release
T_CHARACTERISTICS characteristics station characteristic

result = NEG:

T_ERROR error standard error structure

Data structure T_CHARACTERISTICS

USIGN8 profile_number[2] profile number
USIGN8 functions_supp[3] functions supported
USIGN8 dummy alignment byte
USIGN8 max_pdu_len max. FMS/FM7 PDU length
USIGN8 dummy alignment byte
USIGN8 fms_features_supp [6] FMS features supported
USIGN8 fma7_services_supp [6] FM7 features supported
USIGN8 max_sap_value highest LSAP number
USIGN8 max_no_of_saps max. number of LSAPs
USIGN16 max_comref max. communication reference
USIGN16 max_crl_len max. no. of CRL entries
USIGN32 total_len_of_pdu total length of PDUs
USIGN16 no_of_parallel_serv max no. of parallel serv.
USIGN16 max_od_index highest index in OD
USIGN16 max_od_entries max. no. of OD entries
USIGN8 max_no_vfd max. no. of VFDs
USIGN8 max_las_entries max. no. of LAS
USIGN8 min_tsdr min. station delay time
USIGN8 trdy ready time
USIGN8 tsdi station delay time initiator
USIGN8 max_tsdr station delay responder
USIGN8 tset setup time
USIGN8 tqui quiet time
USIGN8 supported_data_types[4] supported data types
USIGN8 supported_access_rights[3] supported access rights
USIGN8 supported_var_types supported variable types
USIGN8 special_functions[2] special functions
USIGN8 max_od_symbol_length max length of symbol in OD
USIGN8 max_crl_symbol_length max length of symbol in CRL

 PROFIBUS Application Program Interface

Page: 24 PROFIBUS

3.7 Get-Live-List

This service provides the FM7 user with an up-to-date list of all stations that are functional on the bus. The
service is not available for passive stations.

Note:

- In future releases of SOFTING's PROFIBUS API, the service Get-Live-List will be replaced by
service FMB-Get-Live-List. Get-Live-List is supported only for compability with former releases of
PROFIBUS API. Do not use this service in new applications.

Service-Description-Block for Request:

USIGN16 comm_ref not used
USIGN8 layer FM7
USIGN8 service FM7_GET_LIVE_LIST
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result POS

Data block for Request:

n/a

Service-Description-Block for Confirmation:

USIGN16 comm_ref not used
USIGN8 layer FM7_USR
USIGN8 service FM7_GET_LIVE_LIST
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS / NEG

Data block for Confirmation:

result = POS:

Data structure T_GET_LIVE_LIST_CNF

USIGN8 dummy alignment byte
USIGN8 no_of_elements number of life list elements
T_LIVE_LIST live_list[no_of_elements] live list

result = NEG:

T_ERROR error standard error structure

FM7 Services

User Manual Page: 25

Data structure T_LIVE_LIST

USIGN8 station station address (0..124)
USIGN8 status current status of station

Stati:

PASSIVE 0x00 passive station
ACTIVE_NOT_READY 0x01 active station, not ready
ACTIVE_READY 0x02 active station, ready to enter ring
ACTIVE_IN_RING 0x03 active station in ring

 PROFIBUS Application Program Interface

Page: 26 PROFIBUS

3.8 FM7-Reset

The FM7-Reset service is used to reset the FAL with its components FM7, FMS, and LLI.

Note:

- In future releases of SOFTING's PROFIBUS API, the service FM7-Reset will not be supported. FM7-
Reset is supported only for compability with former releases of PROFIBUS API. Please, use FM7-
Exit instead of FM7-Reset in new applications.

Service-Description-Block for Request:

USIGN16 comm_ref not used
USIGN8 layer FM7
USIGN8 service FM7_RESET
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result POS

Data block for Request:

n/a

Service-Description-Block for Confirmation:

USIGN16 comm_ref not used
USIGN8 layer FM7_USR
USIGN8 service FM7_RESET
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS / NEG

Data block for Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_ERROR standard error structure

FM7 Services

User Manual Page: 27

3.9 FM7-Event

The FM7-EVENT service indicates errors and events which have been occurred in LLI or FDL.

Service-Description-Block for die Indication:

USIGN16 comm_ref not used
USIGN8 layer FM7_USR
USIGN8 service FM7_EVENT
USIGN8 primitive IND
INT8 invoke_id not used
INT16 result POS

Data Block:

Data structure T_FM7_EVENT_IND

USIGN16 comm_ref communication reference
USIGN8 instance_id instance identifier
USIGN8 reason event reason
USIGN8 add_detail additional detail
USIGN8 dummy alignment byte

Reason:

(see following page)

 PROFIBUS Application Program Interface

Page: 28 PROFIBUS

Instance identifier:

LLI 2 Lower Layer Interface
FDL 3 Fieldbus Data link Layer

LLI-Fault-Indications:

LLI_FM7_RC1 1 error during SAP activation
LLI_FM7_RC15 15 SDN failed
LLI_FM7_RC18 18 timeout during associate
LLI_FM7_RC19 19 timeout during abort

LLI Additional Detais:

LLI-Fault-Indication Additional Detail
LLI_FM7_RC1 FDL status: NO
LLI_FM7_RC15 FDL status: DS
LLI_FM7_RC18 LLI state
LLI_FM7_RC19 LLI state

FM2 Events:

FM2_FAULT_ADDRESS 1 duplicate address recognized
FM2_FAULT_PHY 2 physical layer is malfunctioning (1)
FM2_FAULT_TTO 3 timeout on bus detected
FM2_FAULT_SYN 4 no receiver synchronization
FM2_FAULT_OUT_OF_RING 5 local station out of ring
FM2_GAP_EVENT 6 GAP area has changed (1)

(1) Not supported by ASPC2

Additional FM2 Events (Error messages from ASPC2)

FM2_MAC_ERROR 19 fatal MAC error
FM2_HW_ERROR 20 fatal HW error

FM7 Services

User Manual Page: 29

3.10 FM7-Exit

This service terminates the FAL with its components FMS, LLI and FM7. Termination means that all
connections are closed and all used resources such as FDL SAPs or send and receive buffers are released.

Service-Description-Block for Request:

USIGN16 comm_ref not used
USIGN8 layer FM7
USIGN8 service FM7_EXIT
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result POS

Data block for Request:

n/a

Service-Description-Block for Confirmation:

USIGN16 comm_ref not used
USIGN8 layer FM7_USR
USIGN8 service FM7_EXIT
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS / NEG

Data block for Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_ERROR standard error structure

 PROFIBUS Application Program Interface

Page: 30 PROFIBUS

4 REMOTE SERVICES

This chapter describes the service-specific parameters and data for remote FM7 services, i.e. those services
which allow communication parameters to be read from or written to remote stations.

All remote FM7 services except for FM7-Initiate and FM7-Abort make use of local management services:
after receiving a xxx_Rem-Indication the FM7 user has to map it onto the corresponding local management
service. After receiving the local xxx_Loc-Confirmation, the data obtained in this way must be transferred to
the requesting station with xxx_Rem-Response.

remote FM7 ind local FM7 req local FM7 conremote FM7 res

remote FM7 local FM7

FAL

Of course, the FM7 user may reject a indication or perform additional actions (e.g. store the new values in
non-volatile memory).

Each device that supports FM7 remote services as server must have a default management connection.
This connection is registered in the CRL under communication reference 1. The configuration of the default
management connection is specified in EN 50170/2 (FM7).

FM7 Services

User Manual Page: 31

4.1 FM7-Initiate

FM7 users must establish a management connection using the FM7-Initiate service prior to executing
remote management services.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF / 1
USIGN8 layer FM7/FM7_USR
USIGN8 service FM7_INITIATE
USIGN8 primitive REQ/IND
INT8 invoke_id not used
INT16 result POS

Data block for Request and Indication:

Data structure T_FM7_INIT_REQ

USIGN8 snd_len_low max FM7 PDU size to send with low priority
USIGN8 rcv_len_low max FM7 PDU size to receive with low priority
USIGN8 supported_services [FEAT_SUPP_LEN] supported FM7 services

The user need not supply any parameters.

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 1 / 2..MAX_COMREF
USIGN8 layer FM7/FM7_USR
USIGN8 service FM7_INITIATE
USIGN8 primitive RES/CON
INT8 invoke_id not used
INT16 result POS / NEG

 PROFIBUS Application Program Interface

Page: 32 PROFIBUS

Data block for Response and Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_FM7_INIT_ERR_CNF

USIGN16 class_code error class and code
USIGN8 snd_len_low max FM7 PDU size to send with low priority
USIGN8 rcv_len_low max FM7 PDU size to receive with low priority
USIGN8 supported_services [FEAT_SUPP_LEN] supported FM7 services

If the FM7 user responds negative, he has to fill in the result and the class_code parameter
E_FM7_USER_DENIED (0x0003). The remaining parameters are set by the protocol stack.

FM7 Services

User Manual Page: 33

4.2 FM7-Abort

The FM7 user may release a management connection with the FM7-Abort service.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF / 1
USIGN8 layer FM7/FM7_USR
USIGN8 service FM7_ABORT
USIGN8 primitive REQ/IND
INT8 invoke_id not used
INT16 result POS

Data block for Request and Indication:

Data structure T_FM7_ABORT_REQ

PB_BOOL local local or remote detected
USIGN8 abort_id abort identifier USR, LLI_USR (FM7), LLI, FDL
USIGN8 reason abort reason code
USIGN8 detail_length length of additional detail
USIGN8 detail[detail_length] additional detail field

Abort Identifiers:

USR 0 identifier USER
LLI_USR 1 identifier LLI_USR (FM7)
LLI 2 identifier LLI
FDL 3 identifier FDL

USER Abort Codes:

USR_ABT_RC1 0 disconnect

 PROFIBUS Application Program Interface

Page: 34 PROFIBUS

FM7 Abort Codes:

FM7_ABT_RC1 0 FM7-CRL error
FM7_ABT_RC2 1 user error
FM7_ABT_RC3 2 FM7-PDU error
FM7_ABT_RC4 3 connection state conflict LLI
FM7_ABT_RC5 4 LLI error
FM7_ABT_RC6 5 PDU size
FM7_ABT_RC7 6 feature not supported
FM7_ABT_RC8 7 response error
FM7_ABT_RC9 8 max services overflow
FM7_ABT_RC10 9 connection state conflict FM7
FM7_ABT_RC11 10 service error

LLI Abort Codes:

LLI_ABT_RC1 0 LLI context check neg
LLI_ABT_RC2 1 invalid LLI-PDU during associate or abort
LLI_ABT_RC3 2 invalid LLI-PDU during data transfer phase
LLI_ABT_RC4 3 unknown or invalid LLI-PDU received
LLI_ABT_RC5 4 DTA-ACK-PDU received and SAC = 0
LLI_ABT_RC6 5 max no of parallel services exceeded (by LLI)
LLI_ABT_RC7 6 unknown invoke id
LLI_ABT_RC8 7 priority error
LLI_ABT_RC9 8 local error at remote station
LLI_ABT_RC10 9 timeout during associate
LLI_ABT_RC11 10 timeout on cyclic connection
LLI_ABT_RC12 11 timeout of idle receive time
LLI_ABT_RC13 12 error while activating LSAP
LLI_ABT_RC14 13 illegal FDL primitive during ASS or ABT
LLI_ABT_RC15 14 illegal FDL primitive in data transfer
LLI_ABT_RC16 15 unknown FDL primitive
LLI_ABT_RC17 16 unknown LLI primitive
LLI_ABT_RC18 17 illegal LLI primitive during ASS or ABT
LLI_ABT_RC19 18 illegal LLI primitive in data transfer
LLI_ABT_RC20 19 invalid CRL entry
LLI_ABT_RC21 20 ASS connection state conflict
LLI_ABT_RC22 21 procedural error on cyclic connection
LLI_ABT_RC23 22 max no of parallel services exceeded (by FMS)
LLI_ABT_RC24 23 CRL being loaded, LLI is disabled
LLI_ABT_RC25 24 confirm / indication mode error
LLI_ABT_RC26 25 illegal FM1/2 primitive
LLI_ABT_RC27 26 illegal service on cyclic connection
LLI_ABT_RC28 27 FMS-PDU too large on cyclic connection

LLI additional abort details if local-flag is FB_TRUE:

Abort Code add. detail
LLI_ABT_RC2 LLI-PDU type
LLI_ABT_RC3 LLI_PDU type
LLI_ABT_RC4 LLI_PDU type
LLI_ABT_RC10 LLI state
LLI_ABT_RC18 LLI service
LLI_ABT_RC19 LLI service

LLI additional abort details if local-flag is FB_FALSE:

Abort Code add detail
LLI_ABT_RC1 remote LLI context

For all other LLI abort codes there is no additional abort detail.

FM7 Services

User Manual Page: 35

FDL Abort Codes:

FDL_ABT_UE 1 remote user interface error
FDL_ABT_RR 2 no remote resources available
FDL_ABT_RS 3 service not activated at remote sap
FDL_ABT_RA 4 no access to remote sap
FDL_ABT_RDL 12 no resource for send response data low
FDL_ABT_RDH 13 no resource for send response data high
FDL_ABT_LS 16 service not activated at local sap
FDL_ABT_NA 17 no reaction from remote station
FDL_ABT_DS 18 local station not in token ring
FDL_ABT_NO 19 FDL service not OK
FDL_ABT_LR 20 no local resources available
FDL_ABT_IV 21 invalid request parameters

FDL Abort Details:

FDL_ABT_AD1 0 error while loading update buffer
FDL_ABT_AD2 1 error while activating poll list entry
FDL_ABT_AD3 2 error while deactivating poll list entry
FDL_ABT_AD4 3 transmit error (SDA.con)
FDL_ABT_AD5 4 transmit error (CSRD.con)
FDL_ABT_AD6 5 transmit error (SRD.con)
FDL_ABT_AD7 6 receive error (CSRD.con)

 PROFIBUS Application Program Interface

Page: 36 PROFIBUS

4.3 Load-CRL-Rem services

In the same way as the local CRL, a CRL is loaded remotely by a sequence of services: the sequence starts
with the Initiate-Load-CRL-Rem service. Once the Initiate-Load-CRL-Rem service has been executed, the
CRL header and subsequently the CRL entries are loaded using the Load-CRL-Rem service. The load
sequence is concluded by the Terminate-Load-CRL-Rem service.

When the Initiate-Load-CRL-Rem service is executed, all server connections except the default
management connection are released. The commnunication relationships stay locked until the Terminate-
Load-CRL-Rem service was executed successfully.

The default management connection (communication reference 1) may NOT be transferred when loading
the CRL. Nevertheless, it must be taken into account when considering the number of CRL entries in the
CRL header. For example, if 10 CRL entries were loaded, then the CRL header must be set to 11 CRL
entries, since the default management connection counts as one. The Load-CRL-Rem service is thus
invoked 11 times, once with CR=0 for the CRL header and ten times with the communication reference
looping from 2 through 11 for the 10 loadable CRL entries.

FM7 Services

User Manual Page: 37

4.3.1 Initiate-Load-CRL-Rem

Initiates loading a CRL onto a remote station.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF / 1
USIGN8 layer FM7/FM7_USR
USIGN8 service FM7_INIT_LOAD_CRL_REM
USIGN8 primitive REQ/IND
INT8 invoke_id not used
INT16 result POS

Data block for Request and Indication:

n/a

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 1 / 2..MAX_COMREF
USIGN8 layer FM7/FM7_USR
USIGN8 service FM7_INIT_LOAD_CRL_REM
USIGN8 primitive RES/CON
INT8 invoke_id not used
INT16 result POS / NEG

Data block for Response and Confirmation

result = POS:

n/a

result = NEG:

Data structure T_ERROR standard error structure

 PROFIBUS Application Program Interface

Page: 38 PROFIBUS

4.3.2 Load-CRL-Rem

The Load-CRL-Rem service loads the CRL header or static part of a CRL entry onto a remote station. The
CRL header is loaded as if it were a CRL entry, with communication reference 0.

The Load-CRL-Rem service must be repeated several times to write the entire CRL. First the CRL header is
loaded, then the entries in ascending order beginning with communication reference 2. Communication
reference 1 is used for performing the service on the agent (server), hence it must be implicitly available and
cannot be loaded by means of the Load-CRL-Rem service.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF / 1
USIGN8 layer FM7/FM7_USR
USIGN8 service FM7_LOAD_CRL_REM
USIGN8 primitive REQ/IND
INT8 invoke_id not used
INT16 result POS

Data block for Request and Indication:

Data structure T_LOAD_CRL_REQ

USIGN16 desired_cr communication reference to be loaded
union
{
 T_CRL_HDR crl_hdr header of CRL(--> 3.3.2)
 T_CRL_STATIC crl_static static entry of CRL(--> 3.3.2)
} id

FM7 Services

User Manual Page: 39

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 1 / 2..MAX_COMREF
USIGN8 layer FM7/FM7_USR
USIGN8 service FM7_LOAD_CRL_REM
USIGN8 primitive RES/CON
INT8 invoke_id not used
INT16 result POS / NEG

Data block for Response and Confirmation

result = POS:

n/a

result = NEG:

Data structure T_ERROR standard error structure

 PROFIBUS Application Program Interface

Page: 40 PROFIBUS

4.3.3 Terminate-Load-CRL-Rem

Terminates loading a CRL onto a remote station.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF / 1
USIGN8 layer FM7/FM7_USR
USIGN8 service FM7_TERM_LOAD_CRL_REM
USIGN8 primitive REQ/IND
INT8 invoke_id not used
INT16 result POS

Data block for Request and Indication:

n/a

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 1 / 2..MAX_COMREF
USIGN8 layer FM7/FM7_USR
USIGN8 service FM7_TERM_LOAD_CRL_REM
USIGN8 primitive RES/CON
INT8 invoke_id not used
INT16 result POS / NEG

Data block for Response and Confirmation

result = POS:

n/a

result = NEG:

Data structure T_CRL_ERROR

T_ERROR error standard error structure
USIGN16 error_cr faulty communication reference

FM7 Services

User Manual Page: 41

4.4 Read-CRL-Rem

The Read-CRL-Rem service is used for reading the CRL header or a CRL entry from a remote station.

For reading the CRL header, communication reference 0 must be specified. For reading a CRL entry its
communication reference must be specified. If the entry is not present, the service confirmation is negative.

For selecting the entire CRL the Read-CRL-Rem service has to be called repeatedly.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF / 1
USIGN8 layer FM7/FM7_USR
USIGN8 service FM7_READ_CRL_REM
USIGN8 primitive REQ/IND
INT8 invoke_id not used
INT16 result POS

Data block for Request and Indication:

Data structure T_READ_CRL_REQ

USIGN16 desired_cr desired communication reference

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 1 / 2..MAX_COMREF
USIGN8 layer FM7/FM7_USR
USIGN8 service FM7_READ_CRL_REM
USIGN8 primitive RES/CON
INT8 invoke_id not used
INT16 result POS / NEG

 PROFIBUS Application Program Interface

Page: 42 PROFIBUS

Data block for Response and Confirmation

result = POS:

Data structure T_READ_CRL_CNF

USIGN16 desired_cr communication reference read
union
{
 T_CRL_HDR crl_hdr CRL header (--> 3.3.2)
 T_CRL_ENTRY crl_entry CRL entry (--> 3.4)
} id

result = NEG:

Data structure T_ERROR standard error structure

The set-up and coding of the status field which contains the LLI state machine condition takes place in
accordance with the PROFIBUS EN 50170/2 (FM7, LLI). The field looks different for each communication
relationship as its set-up depends on the type of communication relationship and the number of parallel
services. No more detailed description is given here, for more information see EN 50170/2 (FM7, LLI).

FM7 Services

User Manual Page: 43

4.5 Set-Value-Rem

The Set-Value-Rem service is used to set FDL operational parameters in remote a station.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF / 1
USIGN8 layer FM7/FM7_USR
USIGN8 service FM7_SET_VALUE_REM
USIGN8 primitive REQ/IND
INT8 invoke_id not used
INT16 result POS

Data block for Request and Indication:

Data structure T_SET_VALUE_REQ

USIGN8 id value identifier
USIGN8 length length of value field
USIGN8 value[length] value

Parameter identifiers:

FDL operational parameters:

ID_TS 1 Station address (1)
ID_BAUD_RATE 2 Baud rate (1)
ID_MEDIUM_RED 3 Redundancy (1)
ID_HW_RELEASE 4 Hardware release (1)
ID_SW_RELEASE 5 Software release (1)
ID_TSL 6 Slot time
ID_MIN_TSDR 7 Minimum Station Delay Time
ID_MAX_TSDR 8 Maximum Station Delay Time
ID_TQUI 9 Timeout
ID_TSET 10 Setup Time
ID_TTR 11 Target Rotation Time
ID_G 12 GAP-Update-Factor
ID_IN_RING_DESIRED 13 In ring desired (1)
ID_HSA 14 Highest station address (1)
ID_MAX_RETRY_LIMIT 15 Max. # of repeats in case of error

Statistics counters:

ID_FRAME_SENT_COUNT 20 # of messages sent (1)
ID_RETRY_COUNT 21 # of message repetitions (1)
ID_SD_COUNT 22 # of valid start delimiters (1)
ID_SD_ERROR_COUNT 23 # of invalid start delimiter (1)

Layer 1 parameters

 30 Transmitter output (enabled or disabled) (1)
 31 Receiver input (primary or alternate) (1)
 32 Internal send/receive loop (enabled or disabled) (1)

(1) set value for this parameter is not supported by the management server of Softing's protocol stack version 5.

 PROFIBUS Application Program Interface

Page: 44 PROFIBUS

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 1 / 2..MAX_COMREF
USIGN8 layer FM7/FM7_USR
USIGN8 service FM7_SET_VALUE_REM
USIGN8 primitive RES/CON
INT8 invoke_id not used
INT16 result POS / NEG

Data block for Response and Confirmation

result = POS:

n/a

result = NEG:

Data structure T_ERROR standard error structure

FM7 Services

User Manual Page: 45

4.6 Read-Value-Rem

The READ-VALUE-REM service is used to read remote station's FDL operational parameters and statistic
counters.

Service-Description-Block for Request and Indication:
USIGN16 comm_ref 2..MAX_COMREF / 1
USIGN8 layer FM7/FM7_USR
USIGN8 service FM7_READ_VALUE_REM
USIGN8 primitive REQ/IND
INT8 invoke_id not used
INT16 result POS

Data block for Request and Indication:
Data structure T_READ_VALUE_REQ

USIGN8 id value identifier
USIGN8 dummy alignment byte

Parameter identifiers:

FDL operational parameters:

ID_TS 1 Local station address
ID_BAUD_RATE 2 Baud rate
ID_MEDIUM_RED 3 Redundancy
ID_HW_RELEASE 4 Hardware-Release
ID_SW_RELEASE 5 Software-Release
ID_TSL 6 Slot-Time
ID_MIN_TSDR 7 Minimum Station Delay Time
ID_MAX_TSDR 8 Maximum Station Delay Time
ID_TQUI 9 Quiet Time
ID_TSET 10 Setup Time
ID_TTR 11 Target token Rotation Time
ID_G 12 GAP-Update-Factor
ID_IN_RING_DESIRED 13 In ring desired
ID_HSA 14 Highest station address
ID_MAX_RETRY_LIMIT 15 Max. # of repetitions in case of error
ID_TRR 16 Real-Rotation-Time
ID_LAS 17 List of active Stations (LAS)
ID_GAPL 18 List of all stations in the local GAP aera (1)

Statistics counters:

ID_FRAME_SENT_COUNT 20 # of messages sent (1)
ID_RETRY_COUNT 21 # of repeated messages (1)
ID_SD_COUNT 22 # of valid start delimiters (1)
ID_SD_ERROR_COUNT 23 # of incorrect start delimiters (1)

Layer 1 parameters

 30 Transmitter output (enabled or disabled) (1)
 31 Receiver input (primary or alternate) (1)
 32 Internal send/receive loop (enabled or disabled) (1)

(1) read value for this parameter is not supported by the management server of Softing's protocol stack version 5.

 PROFIBUS Application Program Interface

Page: 46 PROFIBUS

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 1 / 2..MAX_COMREF
USIGN8 layer FM7/FM7_USR
USIGN8 service FM7_READ_VALUE_REM
USIGN8 primitive RES/CON
INT8 invoke_id not used
INT16 result POS / NEG

Data block for Response and Confirmation

result = POS:

Data structure T_READ_VALUE_CNF

USIGN8 id value identifier
USIGN8 length length of value field
USIGN8 value[length] value

result = NEG:

Data structure T_ERROR standard error structure

LAS coding:

length 1..126 # of active stations
value[0] 0..126 1st station address
value[1] 0..126 2nd station address
...
value[n] 0..126 last station address

FM7 Services

User Manual Page: 47

4.7 LSAP-Status-Rem

The LSAP-Status-Rem service is used to request the configuration of a remote station's FDL Service Access
Point (SAP).

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF / 1
USIGN8 layer FM7/FM7_USR
USIGN8 service FM7_LSAP_STATUS_REM
USIGN8 primitive REQ/IND
INT8 invoke_id not used
INT16 result POS

Data block for Request and Indication:

Data structure T_LSAP_STATUS_REQ

USIGN8 lsap 0..62, BRCT_SAP (63), DEFAULT_SAP (128)
USIGN8 dummy alignment byte

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 1 / 2..MAX_COMREF
USIGN8 layer FM7/FM7_USR
USIGN8 service FM7_LSAP_STATUS_REM
USIGN8 primitive RES/CON
INT8 invoke_id not used
INT16 result POS / NEG

 PROFIBUS Application Program Interface

Page: 48 PROFIBUS

Data block for Response and Confirmation

result = POS:

Data structure T_LSAP_STATUS_CNF

USIGN8 access station address
USIGN8 addr_extension segment number
USIGN8 sda SDA service
USIGN8 sdn SDN service
USIGN8 srd SRD service
USIGN8 csrd CSRD service

result = NEG:

Data structure T_ERROR standard error structure

Service coding:

Each service field (sda, sdn, srd, csrd) contains the arithmetic sum of the parameters "service" and the
"role_in_service":

service:

SDA_RESERVED 0x00 SDA service
SDN_RESERVED 0x01 SDN service
SRD_RESERVED 0x03 SRD service
CSRD_RESERVED 0x05 CSRD service

role_in_service:

INITIATOR 0x00 initiator role
RESPONDER 0x10 responder role
BOTH_ROLES 0x20 initiator / responder
SERVICE_NOT_ACTIVATED 0x30 service not activated

FM7 Services

User Manual Page: 49

4.8 Ident-Rem

The Ident-Rem service is used to get the identification of FMS, FM7, LLI, FDL or the station identification
(characteristic) of a remote station.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 2..MAX_COMREF / 1
USIGN8 layer FM7/FM7_USR
USIGN8 service FM7_IDENT_REM
USIGN8 primitive REQ/IND
INT8 invoke_id not used
INT16 result POS

Data block for Request and Indication:

Data structure T_IDENT_REQ

USIGN8 instance_id instance identifier
USIGN8 dummy alignment byte

Instance identifier:

ID_FM7 0 FM7
ID_FMS 1 FMS
ID_LLI 2 LLI
ID_FDL 3 FDL
ID_STATION 4 STATION and CHARACTERISTIC

Service-Description-Block for Response and Confirmation:

USIGN16 comm_ref 1 / 2..MAX_COMREF
USIGN8 layer FM7/FM7_USR
USIGN8 service FM7_IDENT_REM
USIGN8 primitive RES/CON
INT8 invoke_id not used
INT16 result POS / NEG

 PROFIBUS Application Program Interface

Page: 50 PROFIBUS

Data block for Response and Confirmation

result = POS:

Data structure T_IDENT_CNF

USIGN8 instance_id instance identifier
USIGN8 dummy alignment byte
STRINGV vendor_name[MAX_IDENT_STRING_LENGTH] vendor name
STRINGV controller_type[MAX_IDENT_STRING_LENGTH] controller type
STRINGV hw_release[MAX_IDENT_STRING_LENGTH] HW release
STRINGV sw_release[MAX_IDENT_STRING_LENGTH] SW release
T_CHARACTERISTICS characteristics station characteristic

result = NEG:

T_ERROR error standard error structure

Data structure T_CHARACTERISTICS

USIGN8 profile_number[2] profile number
USIGN8 functions_supp[3] functions supported
USIGN8 dummy1 alignment byte
USIGN8 max_pdu_len max. FMS/FM7 PDU length
USIGN8 dummy2 alignment byte
USIGN8 fms_features_supp [6] FMS features supported
USIGN8 fma7_services_supp [6] FM7 features supported
USIGN8 max_sap_value highest LSAP number
USIGN8 max_no_of_saps max. number of LSAPs
USIGN16 max_comref max. communication reference
USIGN16 max_crl_len max. #. of CRL entries
USIGN32 total_len_of_pdu total length of PDUs
USIGN16 no_of_parallel_serv max #. of parallel serv.
USIGN16 max_od_index highest index in OD
USIGN16 max_od_entries max. #. of OD entries
USIGN8 max_vfd max. #. of VFDs
USIGN8 max_las_entries max. #. of LAS
USIGN8 min_tsdr min. station delay time
USIGN8 trdy ready time
USIGN8 tsdi station delay time initiator
USIGN8 max_tsdr station delay responder
USIGN8 tset setup time
USIGN8 tqui quiet time
USIGN8 supported_data_types[4] supported data types
USIGN8 supported_access_rights[3] supported access rights
USIGN8 supported_var_types supported variable types
USIGN8 special_functions[2] special functions
USIGN8 max_od_symbol_length max length of symbol in OD
USIGN8 max_crl_symbol_length max length of symbol in CRL

FM7 Services

User Manual Page: 51

5 FM7 CONFIGURATION / COMMUNICATION RELATIONSHIP LIST (CRL)

The Communication Relationship List (CRL) contains the specific description of all network communication
relationships of FAL, independent the time of use. The CRL is structured as a CRL header and CRL entries.
The CRL header and each CRL entry are identified by the communication reference (CR).

5.1 CRL Header

The CRL header consists of attributes which define the whole CRL. The following figure shows the
parameters with their definition, the range of value and the defined constants. The constants are defined in
file PB_FM7.H.

Parameter Range of Value Defines Description
nr_of_entries 0 .. 128 0 .. MAX_COMREF number of CRL entries
poll_sap 0,2..61

128

DEFAULT_SAP

poll list SAP (see below)

symbol_length 0 .. 32 0 .. CRL_SYMBOL_LENGTH length of CRL symbol
(see below)

ass_abt_ci 1 .. 232-1 ASS/ABT control interval
(see below)

vfd_pointer_supported 0
255

PB_FALSE
PB_TRUE

one VFD supported
multiple VFDs supported

 PROFIBUS Application Program Interface

Page: 52 PROFIBUS

Description of the CRL header parameters in detail:

nr_of_entries

Number of CRL entries in the CRL additional to the CRL header.

poll_sap

Local FDL SAP which contains the FDL Poll List.

ass_abt_ci

Time control interval in units of 10ms, for monitoring of connection establishment and connection
release. The control interval is valid for all CRs.

symbol_length

A symbolic name can be supplied for each entry in the CRL. The symbolic name's maximum length is
specified here. The constant CRL_SYMBOL_LENGTH is defined in the header file PB_CONF.H.

vfd_pointer_supported

This parameter specifies whether one or more VFDs are supported in the CRL.

FM7 Services

User Manual Page: 53

5.2 CRL Entry

The CRL entry contains the complete description of the station's communication relationships. The following
figure lists the parameters with their definition, the range of value and the defined constants. The constants
are defined in file PB_FM7.H.

PARAMETER RANGE OF VALUE DEFINE DESCRIPTION
loc_lsap

63
128
0 .. 62

BRCT_SAP
DEFAULT_SAP

local SAP
for receiver of BROADCAST messages

for every other case

rem_add
127
255

0 .. 124

ALL
GLOBAL_ADDR

remote station address
for sender of Broadcast messages
used for connections with conn_attr
"O_CONN" and broad- or multi-cast CR
receivers.
for all other cases

rem_segm
0 .. 63
255

NO_SEGMENT

remote segment address

Segment addressing not supported

rem_lsap
63
255
128
0 .. 62

BRCT_SAP
ALL
DEFAULT_SAP

remote SAP
for sender of BROADCAST messages
for connections with "O_CONN" attribute
for all other cases
for all other cases

conn_type (see below) (see below) connection type
LLI_sap 0

1
FMS_SAP
FM7_SAP

LLI SAP for FMS
LLI SAP for FM7

multiplier 0 .. 255 poll list multiplier on cyclic connections
conn_attr

0
1
2

D_CONN
I_CONN
O_CONN

connection attribute
defined connection
initiator of open connection
responder of open connection

max_scc 0 .. 20 max send confirmed counter
max_rcc 0 .. 20 max receive confirmed counter
max_sac 0 .. 20 max send acknowledge counter
max_rac 0 .. 20 max receive acknowledge counter
ci 0 .. 232-1 control intervall
max_pdu_snd_high 0 .. 241 max FMS/FM7 PDU length send high
max_pdu_snd_low 0 .. 241 max FMS/FM7 PDU length send low
max_pdu_rcv_high 0 .. 241 max FMS/FM7 PDU length receive low
max_pdu_rcv_low 0 .. 241 max FMS/FM7 PDU length receive low
feature_supp (see below) supported FMS/FM7 features
symbol (see below) symbolic name
vfd_pointer 0 .. 216-1 vfd number
extension (see below) extension

Description of the CRL entry parameters in detail:

 PROFIBUS Application Program Interface

Page: 54 PROFIBUS

loc_lsap

In master/slave connections the master is characterized by the fact that its loc_lsap is the same as the
poll list SAP. Hence the slave's loc_lsap may not be the same as the poll list SAP.

 Normally each CR must use a unique loc_lsap, however, there are two exceptions to this rule:

 1.) All master/slave CRs of a master use the poll list SAP as their loc_lsap

 2.) Several master/master connections for acyclical data traffic (MMAC) can use the same
 loc_lsap when only one connection is open at a time. This saves resources. In this case
 the CR must have the connection attribute "I_CONN" at the initiating partner's end.

rem_add

This parameter specifies the FDL address of the communication partner. Broadcast- and multicast-
receivers may be parameterized for a specific address (0..126) or for all senders (global address
ALL). For open connections, the value 255 must be specified for the responder (connection attribute
"O_CONN"). These connections can then be established by any partners.

rem_segm

Segment addressing not supported

rem_lsap

This parameter specifies the FDL Service Access Point of the communication partner.

The rem_lsap has no meaning for a receiver of a broadcast or multicast communication relationship.
Group setup for receivers of a multicast CR takes place by specifying a common loc_lsap.

Open connections at the responder end (connection attribute "O_CONN") are also parameterized with
rem_lsap=ALL. These connections can then be established by any loc_lsap.

In all other cases the communication partner's loc_lsap must be supplied.

FM7 Services

User Manual Page: 55

connection_type

This parameter contains the components CR-Type, Data-Event and Role-in-Type.The components
CR-Type, Data Event and Role in Type are encoded in one byte so that each bit or combination of
serveral bits represents a certain characteristic. The figure below shows the definition of each bit or bit
combination.

MSB LSB

Data
Event

 Role in Type Cr Type

Cr-Type:

MMAC 0x00 Master/Master acyclic

MSAC 0x01 Master/Slave acyclic

MSAC_SI 0x05 Master/Slave acyclic with slave initiative

MSCY 0x03 Master/Slave cyclic

MSCY_SI 0x07 Master/Slave cyclic with slave initiative

BRCT 0x08 Broadcast

MULT 0x0A Multicast

Data-Event:

LLI_N_E 0x00 no Data-Event

LLI_E 0x80 with Data-Event (for master of cyclc master/slave connections)

Role-in-Type:

MM_RES 0x10 Responder in Master/Master connection

MM_REQ 0x20 Requester in Master/Master connection

MM_REQ_RES 0x30 Requester/Responder in Master/Master connection

MS_RES 0x10 Responder in Master/Slave connection

MS_REQ 0x20 Requester in Master/Slave connection

CL_RCV 0x10 Receiver in Broadcast/Multicast connection

CL_REQ 0x20 Requester in Broadcast/Multicast connection

 PROFIBUS Application Program Interface

Page: 56 PROFIBUS

max_scc

On communication relationships for acyclic data transfer max_scc specifies the maximum number of
outstanding confirmations a client may process. On communication relationships for cyclic data
transfer and on connectionless communication relationships (BRCT,MULT) max_scc is 0.

Local max_scc must be set in reference with remote max_rcc: (local max_scc ≤ remote max_rcc)
must be valid.

max_rcc

On communication relationships for acyclic data transfer max_rcc specifies the maximum number of
indcations a server may receive without sending a response. On communication relationships for
cyclic data transfer and on connectionless communication relationships (BRCT,MULT) max_rcc is 0.

Valid values for max_scc are 0..20; Local max_scc must be set in reference with remote max_rcc:
(local max_rcc ≥ remote max_scc) must be valid.

max_sac

This parameter specifies the maximum number of unconfirmed services a sender may send without
getting an LLI transport confirmation from the receiver. Local max_sac must be set in reference with
remote max_rac: (local max_sac ≤ remote max_rac) must be valid.

max_rac

This parameter specifies the maximum number of unconfirmed services a receiver may receive
without sending an LLI transport confirmation. Local max_rac must be set in reference with remote
max_sac: (local max_rac ≥ remote max_sac) must be valid.

CI

The control interval is interpreted differently for acyclic and cyclic connections.

For acyclic connections, CI indicates the time interval for acyclic connection control (ACI). If there are
no messages being transferred on this connection, then an idle message is sent by each of the two
stations three times per interval. If either of the two stations does not receive a real or idle message
within one interval period, it aborts the connection. The interval must be identical for both stations, and
this is checked at connection set-up time.

For cyclic connections, CI indicates the time interval for cyclic connection control. For cyclic
connections, besides controlling the connection, the FAL also controls the slave user. To ensure
control over the user, cyclic connection control is mandatory. Control is optional for the slave. It only
makes sense if a connection breakdown occurs and the slave can execute an action (e.g., failsafe,
redundancy switching) in response to the error. The master user's breakdown cannot be recognized
by this type of control.

mult Poll list multiplier for master in a cylic master/slave CR

This attribute indicates how often the CR should be entered in the poll list for the master in cyclic data
traffic connections. By means of a multiplier > 1 the layer 2 poll interval can be shortened and thus this
connection can be given priority over the other cyclic connections. For all other CRs the multiplier has
no meaning.

FM7 Services

User Manual Page: 57

max_pdu_snd_high

This parameter defines the maximum FMS-PDUsize for unconfirmed requests with high priority

Note: max_pdu_snd_high ≤ partner's max_pdu_rcv_high

max_pdu_snd_low

This parameter defines the maximum FMS/FM7-PDU size for requests with low priority

Note: max_pdu_snd_low ≤ partner's max_pdu_rcv_low

max_pdu_rcv_high

This parameter defines the maximum FMS-PDU size for unconfirmed indications with high priority

Note: max_pdu_rcv_high ≥ partner's max_pdu_snd_high

max_pdu_rcv_low

This parameter defines the maximum FMS/FM7-PDU size indications with low priority

Note: max_pdu_rcv_low ≥ partner's max_pdu_snd_low

 PROFIBUS Application Program Interface

Page: 58 PROFIBUS

Supported FMS / FM7 Features

The FMS / FM7 features indicates the supported features as client and as server. The server must as
a minimum support those services which the client requires.

As these are bit fields, the values are entered in hexadecimal representation. The high value byte is
on the right. Bytes which are not used must be assigned witzh "0x00". The following tables show the
values of the possible services.

FMS FEATURES

Byte 0
CLIENT
Byte 1

Byte 2

Byte 3

SERVER
Byte 4

Byte 5

Get-OD (long form) 0x80 0x80
Unsolicited-Status 0x40 0x40
Put-OD 0x20 0x20
Domain-Download 0x10 0x10
Generic-Domain-Download 0x10 0x10
Domain-Upload 0x08 0x08
Request-Domain-Download 0x04 0x04
Request-Domain-Upload 0x02 0x02
Create-Program-Invocation 0x01 0x01
Delete-Program-Invocation 0x01 0x01
Start-Program-Invocation 0x80 0x80
Stop-Program-Invocation 0x80 0x80
Resume-Program-Invocation 0x80 0x80
Reset-Program-Invocation 0x80 0x80
Kill-Program-Invocation 0x40 0x40
Read 0x20 0x20
Write 0x10 0x10
Read-With-Type 0x08 0x08
Write-With-Type 0x04 0x04
Physical-Read 0x02 0x02
Physical-Write 0x01 0x01
Information-Report 0x80 0x80
Information-Report-With-Type 0x40 0x40
Define-Variable-List 0x20 0x20
Delete-Variable-List 0x20 0x20
Event-Notification 0x10 0x10
Event-Notification-With-Type 0x08 0x08
Acknowledge-Event-Notification 0x04 0x04
Alter-Event-Condition-Monitoring 0x02 0x02
Addressing-By-Name 0x01 0x01

FM7 Services

User Manual Page: 59

FM7 SERVICES CLIENT

Byte 0
SERVER

Byte 1
CLIENT
Byte 2

CLIENT
Byte 3

SERVER
Byte 4

SERVER
Byte 5

Initiate-Load-CRL-Rem 0x40 0x40
Load-CRL-Rem 0x40 0x40
Terminate-Load-CRL-Rem 0x40 0x40
Read-CRL-Rem 0x20 0x20
Set-Value-Rem 0x10 0x10
Read-Value-Rem 0x08 0x08
LSAP-Status-Rem 0x04 0x04
Ident-Rem 0x02 0x02
reserved 0x00 0x00

Symbol

A symbolic name represented through a visible-string (STRINGV) can be entered for each
communication relationship. The length of the symbolic name must exceed that specified in the CRL
header. If there is no name defined then the symbolic name must be filled with SPACE characters.

Extension

In addition to the PROFIBUS specification, each communication relationship contains the optional
parameter extension. The extension can be used to store user specific configuration parameters. The
first byte of the extension describes the format of the extension. The following bytes contain the values
of user specific configuration parameters.

Encoding of the first extension byte:

MSB LSB

Extension
Bit

Parameter -Code Length Length Description

0 0 0 no extension available
1 0 0 length in following byte
1 0 1 length 1 Byte
1 1 0 length 2 Bytes
1 1 1 length 3 Bytes

Parameter-Code (5 Bits):

00000: access protection parameter code

00001: profile number parameter code

00010 .. 01111: profile specific parameter code

10000 .. 11111: vendor specific parameter code

 PROFIBUS Application Program Interface

Page: 60 PROFIBUS

APPENDIX A

ERROR STRUCTURE AND ERROR CODES

Data structure: T_ERROR

USIGN16 class_code error class and error code
INT16 add_detail additional detail
STRINGV add_description[MAX_ERROR_DESCR_LENGTH] additional description

The 16 bit class_code parameter contains the error class in the high byte and the error code in the low byte.

 class_ error error Description
 code class code Class Code

E_FM7_APPLICATION_OTHER 0x0100 1 0 Application Other
E_FM7_APPLICATION_UNREACHABLE 0x0101 1 1 Application-Unreachable

E_FM7_RESOURCE_OTHER 0x0200 2 0 Resource Other
E_FM7_RESOURCE_MEM_UNAVAILABLE 0x0201 2 1 Memory-Unavailable

E_FM7_SERV_OTHER 0x0300 3 0 Service Other
E_FM7_SERV_OBJ_STATE_CONFLICT 0x0301 3 1 Object-State-Conflict
E_FM7_SERV_OBJ_CONSTR_CONFLICT 0x0302 3 2 Object-Constraint-Conflict
E_FM7_SERV_PARAM_INCONSIST 0x0303 3 3 Parameter-Inconsistent
E_FM7_SERV_ILLEGAL_PARAM 0x0304 3 4 Illegal-Parameter
E_FM7_SERV_PERM_INTERN_FAULT 0x0305 3 5 Permanent-Internal-Fault

E_FM7_USR_OTHER 0x0400 4 0 User Other
E_FM7_USR_DONT_WORRY_BE_HAPPY 0x0401 4 1 Don't-Worry-Be-Happy
E_FM7_USR_MEM_UNAVAILABLE 0x0402 4 2 Memory-Unavailable

E_FM7_ACCESS_OTHER 0x0500 5 0 Access Other
E_FM7_ACCESS_OBJ_ACC_UNSUP 0x0501 5 1 Object-Access-Unsupported
E_FM7_ACCESS_OBJ_NON_EXIST 0x0502 5 2 Object-Non_Existent
E_FM7_ACCESS_OBJ_ACCESS_DENIED 0x0503 5 3 Object-Access-Denied
E_FM7_ACCESS_HARDWARE_FAULT 0x0504 5 4 Hardware-Fault
E_FM7_ACCESS_TYPE_CONFLICT 0x0505 5 5 Type-Conflict

E_FM7_CRL_OTHER 0x0600 6 0 CRL Other (see additional detail)
E_FM7_CRL_INVALID_ENTRY 0x0601 6 1 Invalid-CRL-Entry
E_FM7_CRL_NO_CRL_ENTRY 0x0602 6 2 No-CRL-Entry
E_FM7_CRL_INVALID_CRL 0x0603 6 3 Invalid-CRL
E_FM7_CRL_NO_CRL 0x0604 6 4 No-CRL
E_FM7_CRL_WRITE_PROTECTED 0x0605 6 5 CRL-Write-Protected
E_FM7_CRL_NO_ENTRY_FOUND 0x0606 6 6 No-CRL-Entry-Found
E_FM7_CRL_NO_MULT_VFD_SUPP 0x0607 6 7 Multiple-VFDs-Not-Supported

E_FM7_OTHER 0x0700 7 0 Other Other

Additional-Details:

NO_ADD_DETAIL 0x00
AD_LLI_LSAP_ACT_FAILED 0x02

FM7 Services

User Manual Page: 61

INDEX

Abort Codes, 33
Abort Identifiers, 33
Bus Parameters, 6
Communication Relationship List, 51
CRL Entry, 53
CRL Header, 51
Default Management Connection, 36
Error Codes, 60
Error Structure, 60
Local Management, 5
Management Connection, 31
Management Events, 27
Remote Management, 30

PROFIBUS Application Program Interface

DP Services

Version 5.2
Rev. 02

Date: 29-June-2001

Softing AG
Richard-Reitzner-Allee 6
D-85540 Haar
Phone (++49) 89 45 65 6 - 0
Fax (++49) 89 45 65 6 - 399

 Copyright by Softing AG, 1989-2003
All rights reserved.

PROFIBUS User Manual

DP Services

PROFIBUS User Manual

Copyright Notice

All rights are reserved. No part of these instructions may be reproduced (printed material,
photocopies, microfilm or other method) or processed, copied or distributed using electronic
systems in any form whatsoever without prior written permission of Softing AG.

The producer reserves the right to make changes to the scope of supply as well as changes to
technical data, even without prior notice.

A great deal of attention was made to the quality and functional integrity in designing,
manufacturing and testing the system. However, no liability can be assumed for potential errors
that might exist or for their effects. Should you find errors please inform your distributor of the
nature of the errors and the circumstances under which they occur. We will be responsive to all
reasonable ideas and will follow up on them, taking measures to improve the product if
necessary.

We call your attention to the fact that the company name and trademark as well as product
names are, as a rule, protected by trademark, patent and product brand laws.

Copyright 1989-2003 by Softing AG, Haar

DP Services

User Manual Page: I

CONTENTS

1 SCOPE ...1

2 OVERVIEW ..2

2.1 FEATURES ..2
2.2 CONCEPT..3

3 FUNCTIONALITY...6

3.1 ARCHITECTURE ...6
3.2 BASIC STATE MACHINE ..7
3.3 SOFTWARE CONFIGURATION..8
3.4 DP MASTER PARAMETER SET...9
3.5 DP SLAVE PARAMETER SETS..11
3.6 DPRAM ADDRESS ASSIGNMENT MODES...12

3.6.1 "ARRAY" Mode ..13
3.6.2 "USER DEFINED" Mode..14
3.6.3 "COMPACT" Mode ..15
3.6.4 "IO-BLOCK" Mode ...16

3.7 LOCAL / REMOTE SERVICES..18

4 SERVICE INTERFACE ..20

4.1 OVERVIEW ..20
4.2 INITIALIZATION / TERMINATION ...23

4.2.1 Init_Master ...23
4.2.2 Exit_Master ..25

4.3 DP MASTER (CLASS 1) SERVICE INTERFACE..26
4.3.1 Upload_Loc / Download_Loc...27
4.3.2 Start_Seq_Loc / End_Seq_Loc ...30
4.3.3 Act_Param_Loc ...32
4.3.4 Data_Transfer ..34
4.3.5 Get_Slave_Diag...36
4.3.6 Set_Prm_Loc ...39
4.3.7 Get_Master_Diag_Loc...40
4.3.8 Get_Slave_Param..42
4.3.7 Set_Busparameter ...44

4.4 DP MASTER (CLASS 2) SERVICE INTERFACE..45
4.4.1 Upload / Download...45
4.4.2 Start_Seq / End_Seq ...48
4.4.3 Act_Para_Brct..51
4.4.4 Act_Param ...52
4.4.5 Get_Master_Diag...54

PROFIBUS Application Program Interface

Page: II PROFIBUS

4.5 DDLM SERVICE INTERFACE .. 55
4.5.1 Set_Prm .. 56
4.5.2 Chk_Cfg .. 57
4.5.3 Get_Cfg ... 58
4.5.4 Slave_Diag.. 59
4.5.5 RD_Inp / RD_Outp .. 61
4.5.6 Data_Exchange... 62
4.5.7 Global_Control .. 63
4.5.8 Set_Slave_Add ... 64

5 DATA INTERFACE.. 65

5.1 DP SLAVE I/O DATA ACCESS... 67
5.2 STATUS INFORMATION .. 67

6. DP STATUS AND ERROR CODES.. 69

6.1. CODING CONVENTIONS... 69
6.2. ERROR CODE DEFINITIONS .. 69

6.2.1. Error Codes... 69
6.2.2. Error Code Extensions .. 70

DP Services

User Manual Page: 1

1 SCOPE

This document describes the concept of Softing's PROFIBUS DP protocol implementation and specifies the
programming interface between PROFIBUS DP protocol software and PROFIBUS DP application.

This document does not describe the functionality of PROFIBUS DP. Therefore, it is expected that the
reader is familiar with PROFIBUS DP and that he knows EN 50170/2.

Softing's PROFIBUS Application Program Interface provides uniform access to all service groups of the
PROFIBUS protocol. The common access functions are described in the "User Interface" part of the
PROFIBUS User Manual.

This document describes the specific constants and data structures of all DP services.

PROFIBUS API

FMB
LLI

remote
FM7local

FM7

FDLIF

FDL

FMS

FAL

FM2

DP /
DP/V1

Figure 1-1: Softing PROFIBUS protocol stack architecture

This document should be read in conjunction with the following parts of the PROFIBUS User Manual:

• "User Interface" (describes the uniform access functions to all PROFIBUS services)

• "FMB Services" (describes the management services which are necessary to configure the
PROFIBUS application layer)

PROFIBUS Application Program Interface

Page: 2 PROFIBUS

2 OVERVIEW

2.1 FEATURES

Softing´s PROFIBUS DP protocol software acts as an active node within a PROFIBUS fieldbus network with
distributed I/O devices (decentral periphery). It might be used as a DP Slave polling device "DP Master
(class 1)" or as a configuration and parameterization tool "DP Master (class 2)" or both simultaneously.

The rigid conformity to the standard EN 50170/2 guarantees interoperability in multi-vendor PROFIBUS
networks. Softing´s DP protocol software supports the entire scope of services defined in the standard.

The software is adaptable to different requirements of user applications. That implies optimal use of the
available resources and a maximum of performance.

All features of PROFIBUS regarding bus transmission speed, telegram length or various station addresses
are supported.

Softing´s PROFIBUS Application Program Interface (PAPI) is the comfortable way to send and receive
network messages or to use the DP Slave process and diagnostic data.

The PROFIBUS DP protocol software offers the following features:

• complete DP Master (class 1) functionality including responder functionality to DP Masters (class 2)

• complete function set of DP Masters (class 2) acting as requester (configuration device)

• no limitations regarding station address, telegram length or diagnostic data image of any DP Slave
(depending on the available memory amount)

• support of I/O data image in Dual Ported Memory (DPRAM) via Softing´s PROFIBUS Application
Program Interface

• fragmentation and location of the DP Slave I/O data image is definable by the user application (Address
Assignment Modes)

• all PROFIBUS DP Master/Slave services are implemented (i.e. DP Slave station address assignment,
acyclic read of inputs and outputs)

• additional status information about DP Slave errors and diagnostic data during every polling cycle is
available and analysed by the Master

DP Services

User Manual Page: 3

2.2 CONCEPT

Combi Stack Architecture

The implementation comprises the functionality of PROFIBUS DP Master devices class 1 and class 2 in
accordance with EN 50170/2.

The protocol stack is designed to allow mixed operation of PROFIBUS DP with all other PROFIBUS
components (FAL, FDLIF, SM7). Distinction between different services is made only by use of different
Service Access Points (SAPs). Stand-alone PROFIBUS DP versions are supported for more efficient and
faster applications. The Basic Management (FMB) is responsible for controlling shared FDL access and the
allocation of resources.

PROFIBUS Application Program Interface, Dual Ported Memory

In order to achieve uniform access to different protocol stacks the PROFIBUS Application Program Interface
is used also by DP. Thus, Service Description Blocks (SDBs) are set up to describe the service independent
parts of request commands, and Data Blocks (DBs) to specify the service specific parts. To address the new
PROFIBUS DP services, a new layer identifier must be used within the SDBs. The document "PROFIBUS
Application Program Interface (PAPI) - User Interface" gives a detailed explanation of this mechanism.

The PROFIBUS DP service interface is accessible either via Dual Ported Memory (DPRAM) by means of the
PAPI functionality or via a task interface without DPRAM. The content of the service description and data
blocks is always identical (described in this document).

The PROFIBUS Application Program Interface provides a Data Interface that is used to access the input and
output area of each DP Slave. Optionally status information for each station is supported. This information is
updated cyclically and informs about the correct data transfer or available diagnostic data during the last
polling cycle. The user application gets the opportunity to determine which DP Slave output areas should be
transferred or not.

To synchronise the data transfer phases of the DP Master (class 1) and the user application, a specific
service is provided. In this implementation the user application is responsible for issuing "Data_Transfer"
requests to start a new polling cycle. The related confirmation indicates the end of the polling cycle.

Service Mapping

All services of DP Master (class 2) are defined in the same way as specified in EN 50170/2.
To ease the use of local and remote services in terms of identical functionality all remote services have a
local counterpart. That means the user application may pass the incoming remote service directly to the
local entity by means of the respective local service (i.e. "Download - Download_Loc", "Act_Param -
Act_Param_Loc", etc.). This approach guarantees convenient access to the communication services nearly
independent from the user’s role (client / server). Also the user is able to use the remote functionality locally
without having different service structures (i.e. getting master status information).

PROFIBUS Application Program Interface

Page: 4 PROFIBUS

Diagnostic Data

When considering the case of different processing times in the communication stack and in the user
application, diagnostic data must not be lost at the interface between them. That is the reason why a buffer
mechanism is provided to supply the user application with diagnostic data. DP Slave diagnostic data is
entered in a circular buffer. An adjustable number of diagnostic data messages can be held as history. The
oldest diagnostic entry is overwritten and an overrun flag is set when a buffer overflow occurs.

To get a diagnostic data snapshot from all DP Slaves currently being used the user must create its own
diagnostic data image. Once initialised at startup only the newly arriving diagnostic messages must be
updated in that chart.

 RAM /
DPRAM

 PROFIBUS DP protocol stack

PROFIBUS FDL / FMA1/2

max_number_slaves

slave parameter set

max_slave_para_len

slave parameter
UP / DOWNLOAD

buffer

max_bus_para_len

bus parameter
UP / DOWNLOAD

buffer

bus parameter set

diagnostic data
circular buffer

max_slave_diag_entries

max_slave_diag_len

DP-Slave
I/O data image

DP-Slave I/O data
127 Octets

Station Status
Information

Pointer /
CMI Descriptor

SEND / RECEIVE
Interface

USER

NIL6254
DP Service Access Points (SAP's)

Master/Master Master/Slave
services

Master/Slave
data exchange

Pointer /
CMI Descriptor

Figure 2-1: overview PROFIBUS DP protocol stack

DP Services

User Manual Page: 5

DP Slave I/O data layout

Usually the I/O data channels of each DP Slave are located equidistant in the (Dual Ported) RAM area. The
DP Slave data then will be handled as data array (one I/O channel per station). DP Slaves using only a part
of the allocated I/O memory consequently leave gaps within the DPRAM.

Since user applications depend on the requirements of the automation task, other layouts of I/O areas might
be necessary. Therefore two other memory Address Assignment Modes (AAM) are supported. By means of
an Address Assignment Table (AAT - part of a Slave Parameter Set) the location and fragmentation of the
DP Slave I/O areas is user definable. Thus also the amount of memory used for the communication
participants is changeable.

PROFIBUS Application Program Interface

Page: 6 PROFIBUS

3 FUNCTIONALITY

3.1 ARCHITECTURE

The PROFIBUS DP protocol stack consists of two main parts:

• User Interface (USIF): built-in application that takes care of each activated DP Slave;
parameterizes and configures the DP Slaves and supplies
automatically I/O and diagnostic data

• Direct Data Link Mapper (DDLM): sublayer for convenient FDL access; offers nearly all DP
services and handles Master/Master communication

There was not made any distinction between services of different sublayers. The user may always direct his
service requests to the "DP" layer (not USIF or DDLM).

PROFIBUS DP

User Interface (USIF)

Direct Data Link Mapper (DDLM)

DP-Slave
Handler

USIF-Service
Handler

Scheduler

DDLM Service Handler

Master / Master
Service Handler

Figure 3-1: PROFIBUS DP main components

The following descriptions refer to the "real" PROFIBUS DP functionality and deal with the User Interface
(USIF) and the services to influence it.

DP Services

User Manual Page: 7

3.2 BASIC STATE MACHINE

The state of the PROFIBUS DP software (USIF state) depends on the user application commands and partly
on the process status of the activated DP Slaves.

The following figure depicts the basic states of the DP protocol stack and the appropriate services to
influence them:

OFFLINE

LOAD_BUS_PARAMETER

DP_INIT_MASTER.req

STOP

CLEAR

OPERATE

DP_DOWNLOAD_LOC.req/.con
[DP_AREA_BUS_PARAM]

DP_ACT_PARAM_LOC.req
[DP_OP_MODE_STOP]

DP_ACT_PARAM_LOC.req
[DP_OP_MODE_CLEAR]

DP_ACT_PARAM_LOC.req
[DP_OP_MODE_OPERATE]

DP User Interface states:

DP_INIT_MASTER.con [+]

DP_ACT_PARAM_LOC.con [+]

DP_DOWNLOAD_LOC.req/.con
[DP_AREA_SLAVE_PARAM]

DP_ACT_PARAM_LOC.con [+]

DP_ACT_PARAM_LOC.con [+]

DP_DATA_TRANSFER.req/.con

DP_DATA_TRANSFER.req/.con

Figure 3-2: Main states of the DP protocol software (User Interface states)

PROFIBUS Application Program Interface

Page: 8 PROFIBUS

3.3 SOFTWARE CONFIGURATION

The amount of memory that will be used during the PROFIBUS DP operation phase can be influenced by
the user. The startup procedure is divided into two parts:

• init_profi function:

 Sets up the interface structures and creates the service and data interface. This function is described in
the "User Interface" part of the PROFIBUS User Manual.

• init_master service:

 Determines the amount of resources that can be used within the DP protocol stack out of the global
pool of available resources (for FMS, DP, FDL).

The "init_master" service is also used to define the:

• Address Assignment Mode (AAM) for DP Slave I/O data location

• default Master station address and name for the default Bus Parameter Set

• operation mode of Service Access Point 54 as requester (M2) or responder (M1)

• handling of status information and I/O areas

These features will be explained in the following paragraphs and in the service interface description.

The following options are determined via compile time variables and are not changeable by the user:

• starting address of the DPRAM area

• DP Slave I/O data destination is DPRAM or RAM (direct copying of DP Slave I/O data by means of
hardware support, e.g. ASPC2 (Advanced SIEMENS Profibus Controller 2))

• amount of DPRAM that can be used for I/O channels

• support of Status Information within the DPRAM

• support of timer to control the duration of different DP intervals or service durations

The amount of resources managed by the PROFIBUS DP communication software is limited with regard to
processing speed and efficient memory handling (combi stacks, FDL access, process requirements). By
means of the first service DP_INIT_MASTER a fixed number of memory blocks will be allocated. These
resources cannot be changed during the PROFIBUS DP operation phase. Reconfiguration may only occur
within the limits of that predefined memory amount. If the user enters the USIF-state OFFLINE again all
memory blocks are released and the startup procedure can be repeated.

DP Services

User Manual Page: 9

3.4 DP MASTER PARAMETER SET

The Master Parameter Set consists of:

• one Bus Parameter Set

• max. 126 DP Slave Parameter Sets ("max_number_slaves" defined in "FMB_Set_Configuration")

All parameter sets are transferred between DP User application and DP protocol stack by means of the
services DP_DOWNLOAD_LOC, DP_UPLOAD_LOC and DP_GET_SLAVE_PARAM.

 DP protocol stack

master parameter set

DP-Slave
parameter
set

(active)
bus
parameter
set

Download
DP-Slave
parameter
set

Download
bus
parameter
set

DP_USER
access

Figure 3-3: PROFIBUS DP Master Parameter Set

The DP Bus Parameter Set consists of the standard FDL operational parameters and some new DP specific
extensions. The following structure shows the parameters in detail:

PROFIBUS Application Program Interface

Page: 10 PROFIBUS

Data Structure Bus Parameter Set:
Data Structure T_DP_BUS_PARA_SET

USIGN16 bus_para_len DP_MIN_BUS_PARA_LEN..
 max_bus_para_len (see FMB_SET_CONFIGURATION)
USIGN8 fdl_add 0..125
USIGN8 baud_rate code number1
USIGN16 tsl see EN 50170/2 (FDL)
USIGN16 min_tsdr
USIGN16 max_tsdr
USIGN8 tqui
USIGN8 tset
USIGN32 ttr
USIGN8 g
USIGN8 hsa
USIGN8 max_retry_limit
USIGN8 bp_flag User Interface flags2
USIGN16 min_slave_intervall 1..216-1, [100µs]
USIGN16 poll_timeout 1..216-1, [1ms]
USIGN16 data_control_time 1..216-1, [10ms]
OCTET reserved [6]
USIGN16 master_user_data_len DP_MASTER_USER_DATA_LEN.. 216-33
STRINGV master_class2_name [32] master who created the parameter set
OCTET master_user_data [master_user_data_len - 34]

1 0 DP_KBAUD_9_6
 1 DP_KBAUD_19_2
 2 DP_KBAUD_93_75
 3 DP_KBAUD_187_5
 4 DP_KBAUD_500
 5 DP_KBAUD_RESERVED
 6 DP_KBAUD_1500
 6 DP_MBAUD_1_5
 7 DP_KBAUD_3000
 7 DP_MBAUD_3
 8 DP_KBAUD_6000
 8 DP_MBAUD_6
 9 DP_KBAUD_12000
 9 DP_MBAUD_12
 10 reserved
 11 DP_KBAUD_45_45

12..255 reserved for future baud rates

2 Bit 7 DP_BP_ERROR_ACTION
 Bits 6..0 reserved (cleared)

DP Services

User Manual Page: 11

3.5 DP SLAVE PARAMETER SETS

The DP Slave parameter sets are used to declare the features of each DP Slave and to define the whole DP
application. It is the most important data base for the user.

The structure of the Slave Parameter Sets is exactly the same defined in the PROFIBUS DP standard.

slave_para_set

prm_data

cfg_data

aat_data

slave_user_data

prm_data_len

cfg_data_len

aat_data_len

slave_user_data_len

slave_para_len

alignment bytes,
if necessary

ACTIVE, NEW_PRM

SYNCH, FREEZE, ...

INPUTS, OUTPUTS

I/O-OFFSETS

Figure 3-4: DP Slave Parameter Set layout

The Slave Parameter Sets are always set up with the byte ordering used by Motorola processors (high byte
first). If data alignment to WORD or LONG variables is needed (e.g. by a host computer) additional alignment
bytes may be inserted as shown above. That means if for example the prm_data_len is of an odd length
one additional alignment byte may be inserted. The following cfg_data then starts on an even address.

The DP protocol stack will recognize the alignment, and if no alignment has been provided the data set will
be aligned automatically. So the user can operate either with "standard" DP Slave data sets or with aligned
data sets.

For a detailed explanation of any parameter in the parameter sets see also the standard EN 50170/2 (FDL
and DP). The structures for DP Slave parameter sets look like follows and are defined in PB_DP.H:

struct T_DP_SLAVE_PARA_SET
USIGN16 slave_para_len 24..DP_MAX_SLAVE_PARA_LEN
USIGN8 sl_flag DP_SL_ACTIVE, DP_SL_FLAG_NEW_PRM
USIGN8 slave_type DP_SLAVE_TYPE_DP
OCTET reserved [12]
T_DP_PRM_DATA prm_data
T_DP_CFG_DATA cfg_data
T_DP_AAT_DATA aat_data
T_DP_USER_DATA user_data

PROFIBUS Application Program Interface

Page: 12 PROFIBUS

struct T_DP_PRM_DATA
USIGN16 prm_data_len 9..DP_MAX_PRM_DATA_LEN (high, low)
OCTET station_status DP_PRM_xxx
OCTET wd_fact_1 watch dog factors
OCTET wd_fact_2 t [s] = 10[ms]*wd_fact_1*wd_fact_2
OCTET min_tsdr t[bit]
USIGN16 ident_number PNO ident number
OCTET group_ident group member bits
OCTET prm_user_data [0..DP_MAX_USER_PRM_DATA_LEN]

struct T_DP_CFG_DATA
USIGN16 cfg_data_len 2..DP_MAX_CFG_DATA_LEN
OCTET cfg_data [cfg_data_len - 2] see EN 50170/2 (DP), DDLM_Chk_Cfg

struct T_DP_AAT_DATA
USIGN16 aat_data_len 2..DP_MAX_AAT_DATA_LEN (high, low)
USIGN8 number_inputs must be identically with cfg_data (in bytes)
USIGN8 number_outputs
USIGN16 offset_inputs [1..number_inputs] see next chapter for explanation
USIGN16 offset_outputs [1..number_outputs]

struct T_DP_SLAVE_USER_DATA
USIGN16 slave_user_data_len 2..DP_MAX_SLAVE_USER_DATA_LEN
OCTET slave_user_data [slave_user_data_len - 2]

3.6 DPRAM ADDRESS ASSIGNMENT MODES

Since user applications always have different requirements in terms of communication participants, I/O data
memory consumption or DP Slave I/O address assignment to locations within the DPRAM, appropriate
addressing modes will be provided.

That means the user may decide where the I/O data of each DP Slave is copied to. So the user is able to
adapt the fieldbus application to a specified automation task (e.g. in PLC programming). During DP Master
initialisation the user must decide which Address Assignment Mode (AAM) should be used:

• DP_AAM_ARRAY

• DP_AAM_DEFINED

• DP_AAM_COMPACT

• DP_AAM_IO-BLOCK

By means of an Address Assignment Table (AAT) within the Slave Parameter Sets the RAM/DPRAM layout
can be defined. Not each Address Assignment Mode requires the definition of an Address Assignment
Table. In the mode "ARRAY" an AAT is not needed! The configuration data of each DP Slave will be
evaluated therefore.

DP Services

User Manual Page: 13

3.6.1 "ARRAY" Mode

The Array I/O Address Assignment Mode is intended for very easy use without concerning any address
location requirements. This mode is the default AAM. The AAT is not used or ignored.

The DP Slave input and output data will be mapped contiguously into the RAM/DPRAM. The I/O memory
areas are located in order of ascending station addresses and have always the same length.

That means if the station addresses are not contiguous gaps will occur between the DP Slave I/O memory
areas. The number of stations to be supported depends on the size of DPRAM and the maximum length of
inputs and outputs.

Following parameters influence the address assignment and are determined by means of the
DP_INIT_MASTER service:

• LOWEST_SLAVE_ADDRESS: address of the first DP Slave station to be located at the beginning of the
DPRAM I/O area

• MAX_NUMBER_SLAVES: maximum number of DP Slaves supported

• MAX_SLAVE_INPUT_LEN: maximum length of DP Slave input values

• MAX_SLAVE_OUTPUT_LEN: maximum length of DP Slave output values

 DPRAM PROFIBUS DP area

CMI: struct T_DATA_DESCR or slave_image_ptr

INPUTS
Slave

x

HOST

CONTROLLER

MAX_SLAVE_INPUT_LEN

n = MAX_NUMBER_SLAVES

INPUTS
Slave
x+1

...
INPUTS
Slave
x+n

input_ptr

OUTPUTS
Slave

x

OUTPUTS
Slave
x+1

...
OUTPUTS
Slave
x+n

output_ptr = input_ptr + n * MAX_SLAVE_INPUT_LEN

MAX_SLAVE_OUTPUT_LEN

x = LOWEST_STATION_ADDRESS

Figure 3-5: DP Slave I/O data in Array Address Assignment Mode

Note, the Array I/O Address Assignment Mode cannot be used together with the PROFIBUS
Windows-NT driver.

PROFIBUS Application Program Interface

Page: 14 PROFIBUS

3.6.2 "USER DEFINED" Mode

Often applications expect special memory layouts to fit their internal addressing (e.g. PLC's). The User
Defined Address Assignment Mode offers the opportunity to determine the location of each input / output
byte of a DP Slave within a 64 Kbytes segment.

The location of each input and output byte must be defined by one offset value per byte. Thus the memory
area is fragmented and the user is responsible for the memory layout (overlapping areas etc.).

The following figure depicts the address assignment:

DP-SLAVE y:

 DPRAM PROFIBUS DP area

CMI: struct T_DATA_DESCR or slave_image_ptr

INPUTS
Slave x

HOST

CONTROLLER

DP-SLAVE x:
Address Assignment Table
 number_inputs = n;
 number_outputs = m;

OUTPUTS
Slave x

USIGN16 [] =
{
 i_offset_1,
 i_offset_2,
 ...
 i_offset_n,
 o_offset_1,
 o_offset_2,
 ...
 o_offset_m
}

i_offset_n

INPUTS
Slave y

OUTPUTS
Slave y

o_offset_2

Figure 3-6: DP Slave I/O data in User Defined Address Assignment Mode

Note, the User Defined I/O Address Assignment Mode cannot be used together with the PROFIBUS
Windows-NT driver.

DP Services

User Manual Page: 15

3.6.3 "COMPACT" Mode

The Compact I/O Address Assignment Mode combines several features of modes "Array" and "User
Defined" to find a compromise in terms of easy use and low memory consumption.

Definition of an Address Assignment Table (AAM) within the Slave Parameter Set is necessary and will be
checked by the protocol software. The user is responsible for defining one starting offset for the input and
the output region of the respective DP Slave. That means overlapping areas are not detected by the protocol
stack! The starting offsets must be even values.

The I/O bytes are always located contiguously so that the linear byte access may be used. The following
figure depicts the Compact Address Assignment Mode:

DP-SLAVE z:

 DPRAM PROFIBUS DP area

CMI: struct T_DATA_DESCR or slave_image_ptr

linear INPUTS
Slave x

HOST

CONTROLLER

DP-SLAVE x:
Address Assignment Table
 number_inputs = n;
 number_outputs = m;

linear OUTPUTS
Slave x

USIGN16 [4] =
{
 i_offset
 o_offset
}

linear
INPUTS
Slave z

 linear
OUTPUTS
Slave z

...

Figure 3-7: DP Slave I/O data in Compact Address Assignment Mode

Note, the Compact I/O Address Assignment Mode cannot be used together with the PROFIBUS
Windows-NT driver.

PROFIBUS Application Program Interface

Page: 16 PROFIBUS

3.6.4 "IO-BLOCK" Mode

The DP protocol software and the PROFIBUS Windows NT driver use a special handshake mechanism to
provide the high performance data interface for DP Slaves. This requires a special data ordering and
alignment within the Dual Ported RAM interface.

The DP protocol software therefore provides the new Address Assignment Mode (AAM) called IO_BLOCKS
which is designed to operate hand in hand with the PROFIBUS Windows NT driver.

Note, the AAM IO-BLOCK is set by the PROFIBUS Windows NT driver automatically during DP_Init_Master
service.

The AAM IO_BLOCKS is handled by the DP Master automatically. That means, there is no need to
configure any offsets to locate DP Slaves.

During the download procedure at the startup phase the DP Master locates each slave within the DPRAM.
Once the DP Master has been forced to enter the state STOP this DPRAM layout is fixed.

Note, because the AAM IO_BLOCKS uses a fixed DPRAM layout it is not possible to change the slave
configuration dynamically! Thus, the service Download will return the error code "access denied" if the
service is executed after entering the state STOP.

Example service sequence for DP initialization:

Startup phase:

• DP_Init_Master (AAM_IO_BLOCKS, ...)
• DP_Download_Loc (Slave n)
• ...
• DP_Download_Loc (Slave m)
• DP_Act_Param_Loc (STOP) ⇒ this service locks the DPRAM layout

Operation phase:

• DP_Act_Param_Loc (CLEAR, OPERATE)
• other DP services

By means of the service DP_Exit_Master it is possible to return to the startup phase of the configuration.
Thus, it is possible to reconfigure all DP Slaves and to relayout the DPRAM after the service
DP_Exit_Master.

DP Services

User Manual Page: 17

How to find out the real position of a DP Slave in the DPRAM using the compatibility
mode of the Windows NT PROFIBUS API?

Since the DP Master automatically locates the DP Slaves in the DPRAM it is necessary to find out the real
position of the slave I/O data. Therefore the service DP_Get_Slave_Param should be used:

Example:

• Startup phase as described above
• Then use the following service for each DP Slave:

- DP_Get_Slave_Param.req (identifier=DP_SLAVE_PARAM_SLAVE_INFO, rem_add=slave_address)
- DP_Get_Slave_Param.con (T_DP_SLAVE_PARAM_SLAVE_INFO)

typedef struct _T_DP_SLAVE_PARAM_SLAVE_INFO
{
 USIGN16 diag_entries, /* available DIAG messages */
 USIGN16 offset_inputs; /* offset of input area within I/O memory */
 USIGN16 offset_outputs; /* offset of output area within I/O memory */
 USIGN8 number_inputs; /* inputs of I/O memory */
 USIGN8 number_outputs; /* outputs of I/O memory */
 USIGN8 sl_flag; /* DP_SL_ACTIVE, DP_SL_FLAG_NEW_PRM */
 USIGN8 slave_type; /* DP_SLAVE_TYPE_DP */
} T_DP_SLAVE_PARAM_SLAVE_INFO;

• The parameters offset_inputs and offset_outputs define the position of the respective DP Slave related to

the beginning of the DPRAM area of slave I/O data. These parameters are used in the services
profi_set_data and profi_get_data to access the I/O memory of DP Slaves.

PROFIBUS Application Program Interface

Page: 18 PROFIBUS

3.7 LOCAL / REMOTE SERVICES

Every service issued by a DP Master (class 2) has a local counterpart. That means the data structures used
for local and remote services are always identical.

Via the INIT_MASTER service the DP user application defines how the DP Master (class 1) reacts when
receiving a remote service request. The parameter auto_remote_services controls the behaviour of the
Master as follows.

DP-User acknowledged remote services (auto_remote_services = FALSE):

In this configuration mode the DP-User application is responsible for acknowledging remote service
requests. The advantage is that the DP application can always update its local data base when receiving a
remote service request.

The DP-User application that receives a remote service indication must use the respective local service to
handle the request. After receiving the local confirmation the application must send the response frame to
the remote DP Master (class 2). The following figure depicts the mapping of remote services onto the local
ones by means of the ACT_PARAM service:

DP Master (class 2) DP Master (class 1)

M2 user M1 user

USIF

ACT_PARAM.req ACT_PARAM.con ACT_PARAM.ind ACT_PARAM.res

ACT_PARAM_LOC.conACT_PARAM_LOC.req

struct T_DP_ACT_PARAM_REQ

struct
T_DP_ACT_PARAM_IND

struct T_DP_ACT_PARAM_RES_CON

struct
T_DP_ACT_PARAM_RES_CON

Figure 3-8: Mapping of local and remote DP Master / Master services by the DP User application

DP Services

User Manual Page: 19

DP Master acknowledged remote services (auto_remote_services = TRUE)

In this configuration mode the DP Master (class 1) answers to all incoming remote services automatically.
That means the DP-User application does not have to react on Master (class 2) service requests! Thus the
application also cannot update its local data structures if the configuration has been changed by a DP
Master (class 2). The following figure illustrates this mechanism:

DP Master (class 2)

DP Master (class 1)

M2 user M1 user

USIF

ACT_PARAM.req ACT_PARAM.con

ACT_PARAM.ind ACT_PARAM.res

struct T_DP_ACT_PARAM_REQ

struct T_DP_ACT_PARAM_RES_CON

Figure 3-9: Automatic response to Master / Master services by the DP protocol software

PROFIBUS Application Program Interface

Page: 20 PROFIBUS

4 SERVICE INTERFACE

This chapter describes the functionality and syntax formats of service calls needed to run a user application
on top of the PROFIBUS DP protocol stack. Therefore the content of all necessary data structures is listed.

The service explanations are structured concerning user requirements. For example some services of the
DDLM sublayer are only used by DP Master (class 2) users and of no interest for usual PROFIBUS DP
applications. That is why those services are explained at the end of the interface description.

All services visible to the user are implemented with regards to EN 50170/2 (DP).

Service return values

Every PROFIBUS DP service returns two bytes status information at the beginning of the service data area.
The values and constants of the error codes are defined in the PB_ERR.H header file.

This status value is defined as follows:

• status low byte: contains the error code like OK, IV, NO, ...

• status high byte: contains the reason code if available (not zero) like E_DP_WRONG_SLAVE_ADD,
E_DP_DATA_ALIGNMENT, ...

4.1 OVERVIEW

The following sections show all available DP services arranged in functional groups together with a short
description of their method of working.

Initialization / Termination Description

DP_INIT_MASTER configures the protocol stack:
- operation mode (Master 1/2)
- Slave I/O data layout

DP_EXIT_MASTER terminates the protocol stack:
- release all activated DP Slaves
- free dynamic memory
- stop the bus access (exit token ring)

DP Services

User Manual Page: 21

Master Parameter Set Access Description

DP_DOWNLOAD_LOC / DP_DOWNLOAD transfers Slave or Bus Parameter Sets:
- DP-User application DP Master (local)
- DP-Configurator DP Master (remote)

DP_UPLOAD_LOC / DP_UPLOAD transfers Slave or Bus Parameter Sets:
- DP Master (local) DP-User application
- DP Master (remote) DP-Configurator

DP_START_SEQ_LOC / DP_START_SEQ
DP_END_SEQ_LOC / DP_END_SEQ

access protection during up/downloads:
- no local / remote access to the specified
 parameter set
- allows multiple up / downloads by means
 of data blocks and offsets

DP_SET_PRM_LOC sets new Slave parameters during the data
exchange phase

DP_GET_SLAVE_PARAM individual upload of Slave Parameter Set
sections (header, prm, cfg, aat, user data)

Status / Operation Control Description

DP_ACT_PARAM_LOC / DP_ACT_PARAM controls the status of DP Masters and Slaves:
- operation mode setting (OFFLINE...
 OPERATE)
- (de)activating DP Slaves
- activating new bus parameters (local)

DP_ACT_PARA_BRCT activates new bus parameters within the whole
PROFIBUS DP network

DP_DATA_TRANSFER synchronises the DP-User application with the
DP Master polling cycles

DP_GLOBAL_CONTROL sends controlling commands to DP Slaves or
groups of Slaves

DP_SET_SLAVE_ADD assigns new station addresses to DP Slaves
across the DP network

PROFIBUS Application Program Interface

Page: 22 PROFIBUS

Diagnosis / Information Description

DP_GET_SLAVE_DIAG provides diagnostic messages of DP Slaves out
of the internal circular buffer of the DP Master
(class 1)

DP_GET_MASTER_DIAG_LOC /
DP_GET_MASTER_DIAG

supplies status information about the DP Master
and related Slaves:
- current Slave diagnostic information
- Master operation mode
- system diagnostic data
- data transfer list

DP_GET_SLAVE_PARAM local information service:
- Slave specific information
- system status information

DP_RD_INP / DP_RD_OUTP acyclic read of DP Slave inputs / outputs for
diagnostic purposes

DP_GET_CFG reads the "real" config data of DP Slaves

Note: The following services may conflict with the local DP Master (class 1) operation and are intended for
test and configuration purposes!

Direct DDLM Access Description

DP_SET_PRM sends new Slave parameters to DP Slaves:
- set operation mode (sync, freeze, ...)
- change Min Tsdr

DP_CHK_CFG compares configuration data with the "real"
CFG-Data of DP Slaves

DP_SLAVE_DIAG reads the current diagnostic status from a DP
Slave

DP_DATA_EXCHANGE transmits output data to DP Slaves and reads
input data

DP Services

User Manual Page: 23

4.2 INITIALIZATION / TERMINATION

4.2.1 Init_Master

This service is provided to allow adaptation of manufacturer and process specific parameters to the
PROFIBUS DP protocol stack and define the operation modes.

With consideration to an easy and effective memory management in combination with PROFIBUS FMS the
amount of memory that might be used for each stack can be different. That is why several maximum values
for parameters must be assigned by means of this service. User specific reconfiguration later must only take
place within the preset maximum limits (e.g. download of Slave Parameter Sets).

The service must be called before any other PROFIBUS DP service!

After resetting the protocol stack to the "OFFLINE" state (service: ACT_PARAM_LOC) the initialisation may be
repeated. The User Interface enters the "LOAD_BUS_PARA" state if the service was successful.

Service Description Block for local Request:
USIGN16 comm_ref not used
USIGN8 layer DP
USIGN8 service DP_INIT_MASTER
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data Block for local Request:
Data Structure T_DP_INIT_MASTER_REQ

USIGN8 master_default_address 0..125, default master station address
PB_BOOL master_class2 TRUE: SAP 54 acts as requester (M2)
 FALSE: SAP 54 acts as responder (M1)
STRINGV master_class2_name [32] M2 name for the default Bus Parameter Set
USIGN8 lowest_slave_address 0.. DP_MAX_SLAVE_ADDRESS
USIGN8 slave_io_address_mode Address Assignment Mode3
PB_BOOL clear_outputs TRUE: in mode "CLEAR" outputs will be set to
 zero before starting the polling cycle
USIGN8 auto_remote_services Bit mask to determine which M1 responses to
 M2 requests should be acknowledged automa
 tically by the protocol stack4
PB_BOOL cyclic_data_transfer TRUE: when entering the state "CLEAR" or "OPERATE" the
 polling cycles start without service "DATA_TRANSFER"

3 00H DP_AAM_ARRAY
 01H DP_AAM_DEFINED
 02H DP_AAM_COMPACT

4 80H DP_AUTO_GET_MASTER_DIAG
 40H DP_AUTO_UPLOAD_DOWNLOAD_SEQ
 20H DP_AUTO_ACT_PARAM
 E0H DP_AUTO_REMOTE_SERVICES
 00H DP_USER_REMOTE_SERVICES

PROFIBUS Application Program Interface

Page: 24 PROFIBUS

Note: If the user directs the protocol stack to go directly in the "STOP" state after initialisation then the
default Bus Parameter Set will be activated. The parameters "master_default_address" and
"master_class2_name" will be used in this parameter set.

The following parameters determine the behaviour of the DP Master:

• master_class2: If this option is enabled the DP Master operates as DP Master (class 2),
i.e. as parameterization and configuration device otherwise as service responder

• auto_remote_services: If the DP Master is configured as M2 responder (master_class2 =
FALSE) and this option is activated for the respective service then incoming remote services will be
answered automatically by the Master and not indicated to the user application! That means the user
has not to provide any M2 handling routines. (see also chapter "3.7 Local / Remote Services" for
explanation)

• cyclic_data_transfer: If there is no need to synchronise the DP user application with the polling
cycles of the DP Master this option should be activated. The Master will automatically start polling
cycles to DP Slaves when entering the "CLEAR" or "OPERATE" state.

Note, that there is only data consistency guaranteed when accessing the DP Slave I/O areas by means of
the Softing PROFIBUS Application Program Interface services. The DP Master indicates new diagnostic
messages or operation mode changes with the services GET_SLAVE_DIAG.ind and
ACT_PARAM_LOC.ind to the DP user application. That means the user application does not have to poll
diagnostic messages.

Service Description Block for local Confirmation:
USIGN16 comm_ref not used
USIGN8 layer DP_USR
USIGN8 service DP_INIT_MASTER
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS/NEG

Data Block for local Confirmation:
Data Structure T_DP_INIT_MASTER_CON

USIGN16 status OK, IV, NO

DP Services

User Manual Page: 25

4.2.2 Exit_Master

This service is the termination counterpart of the "Init_Master" service. It should be used to:

• release all activated DP Slaves and make them available again for other DP Masters,

• free the internal dynamic memory,

• disconnect the Master from the PROFIBUS (stop the participation in the token protocol).

The service is independent on the Master's operation state (STOP, CLEAR, OPERATE) but not executable
within the OFFLINE state.

Service Description Block for local Request:
USIGN16 comm_ref not used
USIGN8 layer DP
USIGN8 service DP_EXIT_MASTER
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data Block for local Request:
VOID

Service Description Block for local Confirmation:
USIGN16 comm_ref not used
USIGN8 layer DP_USR
USIGN8 service DP_EXIT_MASTER
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS/NEG

Data Block for local Confirmation:
Data Structure T_DP_EXIT_MASTER_CON

USIGN16 status OK, NO

PROFIBUS Application Program Interface

Page: 26 PROFIBUS

4.3 DP MASTER (CLASS 1) SERVICE INTERFACE

The DP Master (class 1) contains a predefined fieldbus application, the so called User Interface. It is
responsible for parameterization, configuration of DP Slaves and the data exchange with them.

During startup several initialisation actions have to be done to prepare the stand alone cyclic data exchange
of the User Interface to all assigned DP Slaves (USIF-states "CLEAR/OPERATE").

This chapter provides all information necessary to build up a fieldbus application acting as DP Master (class
1) user onto the PROFIBUS DP protocol stack.

See also chapter "Basic state machine" in this documentation.

The following services defined in EN 50170/2 (DP) have been replaced with the respective local services to
get a uniform service interface:

• Set_Mode Act_Param_Loc

• Mode_Changed Act_Param_Loc

• Load_Bus_Par Download_Loc

• Delete_SC Download_Loc (not supported yet)

DP Services

User Manual Page: 27

4.3.1 Upload_Loc / Download_Loc

The upload / download services can be used by the local user of a DP Master (class 1) to:

• transfer or clear DP Slave parameter sets

• transfer the DP Master Bus Parameter Set

The data structures are identical to those used in the remote services ("upload/download").

Downloads with a data length of zero mean to delete the addressed data area (i.e. Slave Parameter Sets).

In extension to the PROFIBUS DP standard two ways to download data areas have been implemented.
The difference is the automatic parameter check by the protocol stack at the end of a download cycle. That
means a definite download period is needed to realise a complete area access (usually there is no
termination sign after a download sequence).

Start_Seq, Download, End_Seq

t

DP_START_SEQ_LOC DP_DOWNLOAD_LOC

download area

DP_END_SEQ_LOC

download area

...

download area

Now checking
of download
area !

Figure 4-1: Download sequence with area check

Single Download

To ease the implementation of the standard case with data length not longer as the maximum PROFIBUS
telegram length the second download method is provided.

Each download will be treated as complete cycle and parameter checking will take place immediately.

PROFIBUS Application Program Interface

Page: 28 PROFIBUS

t

single DP_DOWNLOAD_LOC

download areadownload area download area

Now checking
of download
area !

Figure 4-2: Single Download with area check (no sequence commands)

Download_Loc

Service Description Block for local Request:
USIGN16 comm_ref not used
USIGN8 layer DP
USIGN8 service DP_DOWNLOAD_LOC
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data Block for local Request:
Data Structure T_DP_DOWNLOAD_REQ

USIGN16 data_len 0..DP_MAX_DOWNLOAD_DATA_LEN
USIGN8 rem_add M1 station address
USIGN8 area_code destination area5
USIGN16 add_offset data block offset
OCTET data [data_len]

Service Description Block for local Confirmation:
USIGN16 comm_ref not used
USIGN8 layer DP_USR
USIGN8 service DP_DOWNLOAD_LOC
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS/NEG

5 0..125 DP_AREA_SLAVE_PARAM (Slave parameter set of the specified DP-Slave)
 127 DP_AREA_BUS_PARAM
 129 DP_AREA_STAT_COUNT (not implemented yet)
 all other values are reserved

DP Services

User Manual Page: 29

Data Block for local Confirmation:
Data Structure T_DP_DOWNLOAD_RES_CON

USIGN16 status OK, AD, EA, LE, SC, NC

Upload_Loc

Service Description Block for local Request:
USIGN16 comm_ref not used
USIGN8 layer DP
USIGN8 service DP_UPLOAD_LOC
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data Block for local Request:
Data Structure T_DP_UPLOAD_REQ

USIGN8 rem_add M1 station address
USIGN8 area_code destination area (see download)
USIGN16 add_offset data block starting offset
USIGN8 data_len 1..DP_MAX_UPLOAD_DATA_LEN
USIGN8 dummy alignment byte

Service Description Block for local Confirmation:
USIGN16 comm_ref not used
USIGN8 layer DP_USR
USIGN8 service DP_UPLOAD_LOC
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS/NEG

Data Block for local Confirmation:
Data Structure T_DP_UPLOAD_RES_CON

USIGN16 status OK, AD, EA, LE, SC, NC
USIGN16 data_len 0..DP_MAX_UPLOAD_DATA_LEN
OCTET data [data_len]

PROFIBUS Application Program Interface

Page: 30 PROFIBUS

4.3.2 Start_Seq_Loc / End_Seq_Loc

By means of these services a sequence of "upload_loc / download_loc" is entered and terminated.

See the description and figures of "upload_loc / download_loc" in the previous section to get detailed
information about service sequences.

Note, that in this implementation the services are not used to provide data access protection because
remote service will be transferred to the user anyway. Furthermore the services marking the start and the
end of a download sequence allow syntax checking of the downloaded data at the end.

Start_Seq_Loc

Service Description Block for local Request:
USIGN16 comm_ref not used
USIGN8 layer DP
USIGN8 service DP_START_SEQ_LOC
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data Block for local Request and Indication:
Data Structure T_DP_START_SEQ_REQ

USIGN8 rem_add M1 station address
USIGN8 area_code destination area6
USIGN16 timeout [1ms]

Service Description Block for local Confirmation:
USIGN16 comm_ref not used
USIGN8 layer DP_USR
USIGN8 service DP_START_SEQ_LOC
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS/NEG

Data Block for local Confirmation:
Data Structure T_DP_START_SEQ_RES_CON

USIGN16 status OK, NO, SC
USIGN8 max_len_data_unit 1..DP_MAX_DOWNLOAD_DATA_LEN
USIGN8 dummy alignment byte

End_Seq_Loc

Service Description Block for local Request:
USIGN16 comm_ref not used
USIGN8 layer DP
USIGN8 service DP_END_SEQ_LOC

6 0..125 DP_AREA_SLAVE_PARAM (Slave parameter set of the specified DP-Slave)
 127 DP_AREA_BUS_PARAM
 129 DP_AREA_STAT_COUNT (not implemented yet)
 255 no local access protection
 all other values are reserved

DP Services

User Manual Page: 31

USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data Block for local Request:
Data Structure T_DP_END_SEQ_REQ

USIGN8 rem_add M1 station address
USIGN8 dummy alignment byte

Service Description Block for local Confirmation:
USIGN16 comm_ref not used
USIGN8 layer DP_USR
USIGN8 service DP_END_SEQ_LOC
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS/NEG

Data Block for local Confirmation:
Data Structure T_DP_END_SEQ_RES_CON

USIGN16 status OK, NO, SC

PROFIBUS Application Program Interface

Page: 32 PROFIBUS

4.3.3 Act_Param_Loc

To control the status of the PROFIBUS DP protocol stack (User Interface) this service has to be used.
The following settings can be influenced:

• activation / deactivation of DP Slaves (sets and resets the DP_SL_ACTIVE flag in the Slave Parameter
Set)

• Bus Parameter Set activation

• operation mode selection of the PROFIBUS DP protocol stack (OFFLINE, STOP, CLEAR, OPERATE)

Indications inform about the following events:

• operation mode changes caused by DP Slave errors (i.e. AUTOCLEAR)

• operation mode changes caused by remote DP Masters (class 2)

Service Description Block for local Request and Indication:
USIGN16 comm_ref not used
USIGN8 layer DP / DP_USR
USIGN8 service DP_ACT_PARAM_LOC
USIGN8 primitive REQ / IND
INT8 invoke_id not used
INT16 result not used

Data Block for local Request:
Data Structure T_DP_ACT_PARAM_REQ

USIGN8 rem_add M1 station address
USIGN8 area_code parameter set to be influenced7
USIGN8 activate area_code dependent value8
USIGN8 dummy alignment byte

7 0..125 DP_AREA_SLAVE_PARAM (Slave parameter set of the specified DP-Slave)
 127 DP_AREA_BUS_PARAM no baud rate changes!
 128 DP_AREA_SET_MODE
 all other values are reserved

8 80H DP_SLAVE_ACTIVATE (area_code = DP_AREA_SLAVE_PARAM)
 00H DP_SLAVE_DEACTIVATE
 FFH DP_BUS_PAR_ACTIVATE (area_code = DP_AREA_BUS_PARAM)
 00H DP_OP_MODE_OFFLINE (area_code = DP_AREA_SET_MODE)
 40H DP_OP_MODE_STOP
 80H DP_OP_MODE_CLEAR
 C0H DP_OP_MODE_OPERATE

DP Services

User Manual Page: 33

Data Block for local Indication:
Data Structure T_DP_ACT_PARAM_IND

USIGN8 rem_add M1 station address
USIGN8 area_code see .req
USIGN8 activate see .req
USIGN8 dummy alignment byte

Service Description Block for local Confirmation:
USIGN16 comm_ref not used
USIGN8 layer DP_USR
USIGN8 service DP_ACT_PARAM_LOC
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS/NEG

Data Block for local Confirmation:
Data Structure T_DP_ACT_PARAM_RES_CON

USIGN16 status OK, NO, DS

PROFIBUS Application Program Interface

Page: 34 PROFIBUS

4.3.4 Data_Transfer

This service is provided to achieve synchronisation between the user and the DP protocol stack and to start
DP Slave polling during the operation phase.

The service is very similar to the standard DP service "MARK". The most important difference is that the
data transfer phases of the Softing DP protocol stack are not timer controlled in the configuration mode
cyclic_data_transfer=FALSE (see service INIT_MASTER).

Each PROFIBUS DP polling cycle must be started by means of this service! The service must be called
cyclically by the user when the protocol stack (USIF) has reached the state "CLEAR/OPERATE".

During execution of this service the DP Slave I/O areas are not consistent because incoming Slave data
might be written directly to these areas. The confirmation indicates the end of Slave polling cycle. Diagnostic
and Status Information now can be analysed.

The service confirmation informs about the number of diagnostic messages in the circular buffer. These
messages may be obtained using the services DP_GET_SLAVE_DIAG (see the following chapter).

The following figure illustrates the use of DP_DATA_TRANSFER:

DP protocol stack
scheduler

t

use_status_info = TRUE:
update DP-Slave
status info for
output transfer DATA_TRANSFER.req

OPERATE

CLEAR

DATA_TRANSFER.con DATA_TRANSFER.req/.con

Data_Exchange, etc.

 no user data access user data access user data access

DP-Slave
handler

Figure 4-3: Service DP_Data_Transfer for activating polling cycles and synchronisation

DP Services

User Manual Page: 35

Service Description Block for local Request:
USIGN16 comm_ref not used
USIGN8 layer DP
USIGN8 service DP_DATA_TRANSFER
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data Block for local Request:
VOID

Service Description Block for local Confirmation:
USIGN16 comm_ref not used
USIGN8 layer DP_USR
USIGN8 service DP_DATA_TRANSFER
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS/NEG

Data Block for local Confirmation:
Data Structure T_DP_DATA_TRANSFER_CON

USIGN16 status OK, NO
INT16 diag_entries DP_SLAVE_DIAG_OVERFLOW..
 max_slave_diag_entries (see "init_master")

PROFIBUS Application Program Interface

Page: 36 PROFIBUS

4.3.5 Get_Slave_Diag

If a DP Slave indicates the presence of diagnostic data, the DP Master (class 1) will immediately call for
these data. The diagnostic data will be entered in a circular buffer of parametrizable length (see service
"init_master"). Only if an overflow occurs the oldest entry will be overwritten and the overflow status flag will
be set.

If an actual diagnostic image of any used DP Slave is needed, the DP-User application must set up this
image by itself. Once initialised at startup every incoming diagnostic message must be used to update this
area. The following figure illustrates this method:

DP user
DP-Slave diagnostic image

DP protocol stack

slave
0

slave
1

slave
...

slave
125

slave
126

DP-Slave diagnostic
circular buffer

max_slave_diag_entries
max_slave_diag_len

DP_GET_SLAVE_DIAG

Figure 4-4: DP Slave diagnostic images within the DP and DP User software

The way that the user will be informed about changes within the circular buffer of diagnostic messages
depends on the configuration of cyclic_data_transfer during the INIT_MASTER service.

cyclic_data_transfer = TRUE

The DP Master (class 1) is not synchronised with the DP-User application in this mode and runs in-
dependently. If any new diagnostic messages are available the Master will indicate this by means of a
DP_GET_SLAVE_DIAG.ind. The DP-User application does not have to poll the protocol software.
If more than one messages are entered in the circular buffer, the application must retrieve them by means of
further DP_GET_SLAVE_DIAG.req services.

DP Services

User Manual Page: 37

cyclic_data_transfer = FALSE

After each polling cycle initiated with DP_DATA_TRANSFER.req the number of available diagnostic
messages within the circular buffer is returned. By means of DP_GET_SALVE_DIAG.req the user can read
the oldest diagnostic message from the circular buffer. The number of messages left in the buffer will be also
returned.

Service Description Block for local Request:
USIGN16 comm_ref not used
USIGN8 layer DP
USIGN8 service DP_GET_SLAVE_DIAG
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data Block for local Request:
VOID

Service Description Block for local Confirmation and Indication:
USIGN16 comm_ref not used
USIGN8 layer DP_USR
USIGN8 service DP_GET_SLAVE_DIAG
USIGN8 primitive CON / IND
INT8 invoke_id not used
INT16 result POS/NEG

Data Block for local Confirmation / Indication:
Data Structure T_DP_GET_SLAVE_DIAG_CON / T_DP_GET_SLAVE_DIAG_IND

USIGN16 status OK, NO
USIGN8 rem_add 0..DP_DEFAULT_STATION_ADDRESS
USIGN8 dummy alignment byte
INT16 diag_entries -1..max_diag_entries (see "Init_Master")9
USIGN16 diag_data_len 0..DP_MAX_SLAVE_DIAG_DATA_LEN
T_DP_DIAG_DATA diag_data

9 -1 DP_SLAVE_DIAG_OVERFLOW

PROFIBUS Application Program Interface

Page: 38 PROFIBUS

Data Structure T_DP_DIAG_DATA

OCTET station_status_1 DP_DIAG_1_xxx10
OCTET station_status_2 DP_DIAG_2_xxx11
OCTET station_status_3 DP_DIAG_3_xxx12
USIGN8 master_add Master address which has parameterized the
 DP Slave
USIGN16 ident_number PNO ident
OCTET ext_diag_data [diag_data_len - 6]

Note: The meaning of the bits in "station_status_x" is defined in the standard EN 50170/2 (DP) section
"DDLM_Slave_Diag".

10 Bit 7 DP_DIAG_1_MASTER_LOCK (influenced by DP Master)
 Bit 6 DP_DIAG_1_PRM_FAULT
 Bit 5 DP_DIAG_1_INVALID_SLAVE_RES (influenced by DP Master)
 Bit 4 DP_DIAG_1_NOT_SUPPORTED
 Bit 3 DP_DIAG_1_EXT_DIAG
 Bit 2 DP_DIAG_1_CFG_FAULT
 Bit 1 DP_DIAG_1_STATION_NOT_READY
 Bit 0 DP_DIAG_1_STATION_NON_EXISTENT (influenced by DP Master)
11 Bit 7 DP_DIAG_2_DEACTIVATED (influenced by DP Master)
 Bit 5 DP_DIAG_2_SYNC_MODE
 Bit 4 DP_DIAG_2_FREEZE_MODE
 Bit 3 DP_DIAG_2_WD_ON
 Bit 2 DP_DIAG_2_DEFAULT
 Bit 1 DP_DIAG_2_STAT_DIAG
 Bit 0 DP_DIAG_2_PRM_REQ
12 Bit 7 DP_DIAG_3_EXT_DIAG_OVERFLOW

DP Services

User Manual Page: 39

4.3.6 Set_Prm_Loc

Before starting to communicate with a DP Slave the user has to download the Slave Parameter Set. This
includes the following parameter set:

struct T_DP_PRM_DATA
USIGN16 prm_data_len 9..DP_MAX_PRM_DATA_LEN
OCTET station_status DP_PRM_xxx
OCTET wd_fact_1 watch dog factors
OCTET wd_fact_2 t [s] = 10[ms]*wd_fact_1*wd_fact_2
OCTET min_tsdr t[bit]
USIGN16 ident_number PNO ident number
OCTET group_ident group member bits
OCTET prm_user_data [0..DP_MAX_USER_PRM_DATA_LEN]

The parameter "station_status" might be changed by the user at any time during the operation phase of a
DP Slave (cyclic data exchange).

The service DP_SET_PRM_LOC allows to change the parameter data within the Slave Parameter Set without
influencing the Slave status. Thus the operation mode of any DP Slave can be changed also in the data
transfer state.

By means of this service the DP_SL_NEW_PRM flag is set and the Slave handler automatically transfers the
new parameterization data to the DP Slave.

Service Description Block for local Request:
USIGN16 comm_ref not used
USIGN8 layer DP
USIGN8 service DP_SET_PRM_LOC
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data Block for local Request:
Data Structure T_DP_SET_PRM_REQ

USIGN8 rem_add 0..DP_DEFAULT_SLAVE_ADDRESS
USIGN8 dummy alignment byte
T_DP_PRM_DATA prm_data (see above)

Service Description Block for local Confirmation:
USIGN16 comm_ref not used
USIGN8 layer DP_USR
USIGN8 service DP_SET_PRM_LOC
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS/NEG

Data Block for local Confirmation:
Data Structure T_DP_SET_PRM_CON

USIGN16 status OK, DS, NO

PROFIBUS Application Program Interface

Page: 40 PROFIBUS

4.3.7 Get_Master_Diag_Loc

The service can be used to get the following information:

• current diagnostic status of a specified DP Slave (the data is not taken out of the circular buffer for
diagnostic messages!)

• 16 Octets bit field about system diagnostic information (1 bit per DP Slave indicates the availability of
new diagnostic messages for the respective Slave)

• Master status information (the operation mode, PNO ident number and release information can be
obtained)

• 16 Octets bit field about the data transfer during the "Data_Control" time (1 bit per DP Slave indicates at
least one successful data exchange with the respective Slave)

Service Description Block for local Request:
USIGN16 comm_ref not used
USIGN8 layer DP
USIGN8 service DP_GET_MASTER_DIAG_LOC
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data Block for local Request:
Data Structure T_DP_GET_MASTER_DIAG_REQ

USIGN8 rem_add 0..125 (address of local Master)
USIGN8 identifier DP_DIAG_xxx13

Service Description Block for local Confirmation:
USIGN16 comm_ref not used
USIGN8 layer DP_USR
USIGN8 service DP_GET_MASTER_DIAG_LOC
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS/NEG

Data Block for local Confirmation:
Data Structure T_DP_GET_MASTER_DIAG_RES_CON

USIGN16 status OK, IV, NO
USIGN16 data_len 0..244
OCTET diagnostic_data [data_len]

13 0..125 DP_DIAG_SLAVE_DATA
 126 DP_DIAG_SYSTEM_DIAGNOSTIC
 127 DP_DIAG_MASTER_STATUS
 128 DP_DIAG_DATA_TRANSFER_LIST

DP Services

User Manual Page: 41

DP_DIAG_SLAVE_DATA: struct T_DP_DIAG_DATA (see also DP_GET_SLAVE_DIAG)
OCTET station_status_1 DP_DIAG_1_xxx
OCTET station_status_2 DP_DIAG_2_xxx
OCTET station_status_3 DP_DIAG_3_xxx
USIGN8 master_add related DP Master to the slave
USIGN16 ident_number PNO identification
OCTET ext_diag_data [data_len - DP_MIN_SLAVE_DIAG_LEN]

DP_DIAG_SYSTEM_DIAGNOSTIC: OCTET [16]
OCTET [0] bit 0 = TRUE: slave 0 has new diag data
 bit 1 = TRUE: slave 1 has new diag data
 ...
OCTET [1] bit 0 = TRUE: slave 8 ...
...
OCTET [15]

DP_DIAG_MASTER_STATUS: struct T_DP_MASTER_STATUS
OCTET usif_state DP_OP_MODE_xxx14
USIGN8 ident_number_high PNO ident number (not aligned)
USIGN8 ident_number_low
OCTET dp_hardware_version DDLM/USIF release information
OCTET dp_firmware_version
OCTET user_hardware_version DP USER release information
OCTET user_firmware_version
OCTET reserved [9]

DP_DIAG_DATA_TRANSFER_LIST: OCTET [16]
OCTET [0] bit 0 = TRUE: slave 0 data exchange ok (during Data_Control time)
 bit 1 = TRUE: slave 1 data exchange ok
 ...
OCTET [1] bit 0 = TRUE: slave 8 ...
...
OCTET [15]

14 0x00 DP_OP_MODE_OFFLINE
 0x40 DP_OP_MODE_STOP
 0x80 DP_OP_MODE_CLEAR
 0xC0 DP_OP_MODE_OPERATE

PROFIBUS Application Program Interface

Page: 42 PROFIBUS

4.3.8 Get_Slave_Param

This service provides additional local information about Slaves and the DP Master. Additionally all slave
diagnostic messages, which are stored in the circular buffer, can be flushed at once. This feature is recom-
mended to use after diagnostic message overrun of the circular buffer.

It can ease the upload of sections from DP Slave parameter sets or to get Master and system wide
information. The following data can be obtained in detail:

• all individual parts of any DP Slave parameter set (Header, PRM_Data, CFG_Data, AAT_Data,
User_Data); the upload length is limited up to 244 bytes (DP_MAX_TELEGRAM_LEN)

• Slave specific information (number diag entries, active flag, type, I/O data offsets, I/O length)

• system information (loaded Slaves, active Slaves, number diag entries, I/O image length)

Service Description Block for local Request:
USIGN16 comm_ref not used
USIGN8 layer DP
USIGN8 service DP_GET_SLAVE_PARAM
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data Block for local Request:
Data Structure T_DP_GET_SLAVE_PARAM_REQ

USIGN8 identifier DP_SLAVE_PARAM_xxx15
USIGN8 rem_add 0..126 (slave address if necessary)

Service Description Block for local Confirmation:
USIGN16 comm_ref not used
USIGN8 layer DP_USR
USIGN8 service DP_GET_SLAVE_PARAM
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS/NEG

Data Block for local Confirmation:
Data Structure T_DP_GET_SLAVE_PARAM_CON

USIGN16 status OK, NO, IV, NE
USIGN16 data_len 0..244
OCTET slave_param_data [data_len]

15 1 DP_SLAVE_PARAM_HEADER
 2 DP_SLAVE_PARAM_PRM_DATA
 3 DP_SLAVE_PARAM_CFG_DATA
 4 DP_SLAVE_PARAM_AAT_DATA
 5 DP_SLAVE_PARAM_USER_DATA
 6 DP_SLAVE_PARAM_SLAVE_INFO
 7 DP_SLAVE_PARAM_SYS_INFO
 8 DP_SLAVE_PARAM_FLUSH_DIAG

DP Services

User Manual Page: 43

DP_SLAVE_PARAM_HEADER: struct T_DP_SLAVE_PARA_SET
USIGN16 slave_para_len 22.. MAX_SLAVE_PARA_LEN (high, low)
USIGN8 sl_flag DP_SL_ACTIVE, DP_SL_FLAG_NEW_PRM
USIGN8 slave_type DP_SLAVE_TYPE_DP
OCTET reserved [12]

DP_SLAVE_PARAM_PRM_DATA: struct T_DP_PRM_DATA
USIGN16 prm_data_len 2.. DP_MAX_PRM_DATA_LEN (high, low)
OCTET station_status DP_PRM_xxx
OCTET wd_fact_1 watch dog factors
OCTET wd_fact_2 t [s] = 10[ms]*wd_fact_1*wd_fact_2
OCTET min_tsdr t[bit]
USIGN16 ident_number PNO ident number
OCTET group_ident group member bits
OCTET prm_user_data [data_len - DP_MIN_PRM_DATA_LEN]

DP_SLAVE_PARAM_CFG_DATA: struct T_DP_CFG_DATA
USIGN8 cfg_data_len 2..DP_MAX_CFG_DATA_LEN (high,low)
OCTET cfg_data [data_len - 2] see EN 50170/2 (DP) , chapter DDLM_Chk_Cfg

DP_SLAVE_PARAM_AAT_DATA: struct T_DP_AAT_DATA
USIGN16 aat_data_len 2..DP_MAX_AAT_DATA_LEN (high,low)
USIGN8 number_inputs see "3.6 DPRAM Address Assignment Modes"
USIGN8 number_outputs
USIGN16 offset_inputs [1..number_inputs]
USIGN16 offset_outputs [1..number_outputs]

DP_SLAVE_PARAM_USER_DATA: struct T_DP_SLAVE_USER_DATA
USIGN16 slave_user_data_len 2..DP_MAX_SLAVE_USER_DATA_LEN
 (high, low)
OCTET slave_user_data [slave_user_data_len - 2]

DP_SLAVE_PARAM_SLAVE_INFO: struct T_DP_SLAVE_PARAM_SLAVE_INFO
NOTE: all following values are related to the DP Slave "rem_add"

USIGN16 diag_entries number diag messages within the circular buffer
USIGN16 offset_inputs I/O data location offsets
USIGN16 offset_outputs
USIGN8 number_inputs number I/O values in bytes
USIGN8 number_outputs
USIGN8 sl_flag DP_SL_ACTIVE, DP_SL_FLAG_NEW_PRM
USIGN8 slave_type DP_SLAVE_TYPE_DP

DP_SLAVE_PARAM_SYS_INFO: struct T_DP_SLAVE_PARAM_SYS_INFO
USIGN8 loaded slaves number downloaded Slave Parameter Sets
USIGN8 active slaves number slaves with DP_SL_ACTIVE = TRUE
INT16 diag_entries number diag entries within the circular buffer16
USIGN16 slave_io_image_len length of used slave I/O memory area

DP_SLAVE_PARAM_FLUSH_DIAG:
VOID the circular buffer for diagnostic messages has been flushed

16 -1 DP_SLAVE_DIAG_OVERFLOW

PROFIBUS Application Program Interface

Page: 44 PROFIBUS

4.3.7 Set_Busparameter

This service shall be used if the DP protocol is operated in a multiprotocol environment.

In a multiprotocol environment busparameters are set by means of the FMB service FMB_Set_Buspara-
meter but the DP specific section is not contained in that parameter set (e.g. min_slave_interval, etc.). The
DP parameters are loaded separately with the service DP_Set_Busparameters.

Service Description Block for local Request:
USIGN16 comm_ref not used
USIGN8 layer DP
USIGN8 service DP_SET_BUSPARAMETER
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data Block for local Request:
Data Structure T_DP_SET_BUSPARAMETER_REQ

USIGN8 bp_flag bus parameter flags (e.g. DP_BP_ERROR_ACTION)
USIGN8 dummy alignment byte
USIGN16 min_slave_interval 1..2^16-1 [100µs]
USIGN16 poll_timeout 1..2^16-1 [1 ms]
USIGN16 data_control_time 1..2^16-1 [10 ms]
USIGN16 master_user_data_len 34..DP_MAX_SET_BUSPARAMETER_LEN
STRINGV master_class2_name [32] DP Master (class 2) vendor name
OCTET master_user_data [0..DP_MAX_SET_BUSPARAMETER_LEN - 34]

Service Description Block for local Confirmation:
USIGN16 comm_ref not used
USIGN8 layer DP_USR
USIGN8 service DP_SET_BUSPARAMETER
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS/NEG

Data Block for local Confirmation:
Data Structure T_DP_SET_BUSPARAMETER_CON

USIGN16 status OK, IV, NO

DP Services

User Manual Page: 45

4.4 DP MASTER (CLASS 2) SERVICE INTERFACE

Usually a DP Master (class 2) is a device for diagnostic and configuration purposes. That is why services for
station address assignment and remote parameterization are provided. The DP Master (class 2) always acts
as requester in communication relationships with DP Masters (class 1) and DP Slaves.

The DP Master (class 2) is permitted to use all services offered by the PROFIBUS DP DDLM sublayer. In
addition there are some new services that have only been designed to support DP Master (class 2) / DP
Master (class 1) communication. The following chapter deals with these services in detail.

4.4.1 Upload / Download

These services are used to transfer data blocks between DP Master (class 2) and DP Master (class 1). The
DP Master (class 2) always initiates the block transmission.

The data consistency during the transmission of several blocks is not guaranteed by the upload / download
services. Additional services for access protection are provided by means of 'Start_Seq' and 'End_Seq'.
Once 'Start_Seq' has been called no other user or DP Master (class 2) is allowed to access the destination
data until the 'End_Seq' was sent.

Both services have a local counterpart at Softing´s DP Master (class 1) software. Any incoming service will
be indicated to the user. The user then may use the local service to handle the indication or rejects the
service with a negative service response. (see also chapter "Local / Remote Services" for details)

The upload / download services will be used to transfer all parameter sets necessary for bus communication
and Slave handling. Also statistic information can be obtained. Deletion of parameter sets is supported by
writing zeros or empty blocks (see also chapter "Upload_Loc / Download_Loc" for details).

Download

Service Description Block for Request:
USIGN16 comm_ref not used
USIGN8 layer DP/DP_USR
USIGN8 service DP_DOWNLOAD
USIGN8 primitive REQ/IND
INT8 invoke_id not used
INT16 result not used

Data Block for Request:
Data Structure T_DP_DOWNLOAD_REQ

USIGN16 data_len 0..DP_MAX_DOWNLOAD_DATA_LEN
USIGN8 rem_add M1 station address
USIGN8 area_code destination area17
USIGN16 add_offset data block offset
OCTET data [data_len]

17 0..125 DP_AREA_SLAVE_PARAM (Slave parameter set of the specified DP-Slave)
 127 DP_AREA_BUS_PARAM
 129 DP_AREA_STAT_COUNT (not implemented yet)
 all other values are reserved

PROFIBUS Application Program Interface

Page: 46 PROFIBUS

Data Block for Indication:
Data Structure T_DP_DOWNLOAD_IND

USIGN16 data_len 0..DP_MAX_DOWNLOAD_DATA_LEN
USIGN8 rem_add M2 station address
USIGN8 area_code see .req
USIGN16 add_offset data block offset
OCTET data [data_len]

Service Description Block for Response and Confirmation:
USIGN16 comm_ref not used
USIGN8 layer DP/DP_USR
USIGN8 service DP_DOWNLOAD
USIGN8 primitive RES/CON
INT8 invoke_id not used
INT16 result POS/NEG

Data Block for Response and Confirmation:
Data Structure T_DP_DOWNLOAD_RES_CON

USIGN16 status OK, DS, NA, RS, RR, UE, RE, TO, FE, NE, AD, EA, LE, SC,
NI,
 NC

Upload

Service Description Block for Request:
USIGN16 comm_ref not used
USIGN8 layer DP/DP_USR
USIGN8 service DP_UPLOAD
USIGN8 primitive REQ/IND
INT8 invoke_id not used
INT16 result not used

Data Block for Request:
Data Structure T_DP_UPLOAD_REQ

USIGN8 rem_add M1 station address
USIGN8 area_code destination area (see download)
USIGN16 add_offset data block starting offset
USIGN8 data_len 1..DP_MAX_UPLOAD_DATA_LEN
USIGN8 dummy alignment byte

Data Block for Indication:
Data Structure T_DP_UPLOAD_IND

USIGN8 rem_add M2 station address
USIGN8 area_code destination area (see download)
USIGN16 add_offset data block starting offset
USIGN8 data_len 1..DP_MAX_UPLOAD_DATA_LEN
USIGN8 dummy alignment byte

Service Description Block for Response and Confirmation:
USIGN16 comm_ref not used
USIGN8 layer DP/DP_USR
USIGN8 service DP_UPLOAD
USIGN8 primitive RES/CON
INT8 invoke_id not used
INT16 result POS/NEG

DP Services

User Manual Page: 47

Data Block for Response and Confirmation:
Data Structure T_DP_UPLOAD_RES_CON

USIGN16 status OK, DS, NA, RS, RR, UE, RE, TO, FE, NE, AD, EA, LE, SC, NI
USIGN16 data_len 0..DP_MAX_UPLOAD_DATA_LEN
OCTET data [data_len]

PROFIBUS Application Program Interface

Page: 48 PROFIBUS

4.4.2 Start_Seq / End_Seq

These services are intended for use in combination with Upload / Download. They deliver access protection
during the block transfer and thus they provide data consistency.

Once the 'Start_Seq' has been called the user or any other DP Master (class 2) is not permitted to access
the DP Master (class 1) as long as the 'End_Seq' was not called. That means all upload / download
sequences may be framed by means of these services and only complete sequences may be accessed.

Both services have a local counterpart at Softing´s DP Master (class 1) software. Any incoming service will
be indicated to the user. The user then may use the local service to handle the indication or rejects the
service with a negative service response (see also chapter "Local / Remote Services for details).

In this implementation the services "Start_Seq_Loc / End_Seq_Loc" do not provide data access protection.
Furthermore they are used to mark the start and the end of download sequences. This mechanism is used
to check downloaded data automatically by the protocol stack at the end of the sequence (see chapter
"Start_Seq_Loc / End_Seq_Loc" for details).

Start_Seq

Service Description Block for Request:
USIGN16 comm_ref not used
USIGN8 layer DP/DP_USR
USIGN8 service DP_START_SEQ
USIGN8 primitive REQ/IND
INT8 invoke_id not used
INT16 result not used

Data Block for Request:
Data Structure T_DP_START_SEQ_REQ

USIGN8 rem_add M1 station address
USIGN8 area_code destination area18
USIGN16 timeout [1ms]

Data Block for Indication:
Data Structure T_DP_START_SEQ_IND

USIGN8 rem_add M2 station address
USIGN8 area_code see .req
USIGN16 timeout [1ms]

Service Description Block for Response and Confirmation:
USIGN16 comm_ref not used
USIGN8 layer DP/DP_USR
USIGN8 service DP_START_SEQ
USIGN8 primitive RES/CON
INT8 invoke_id not used
INT16 result POS/NEG

18 0..125 DP_AREA_SLAVE_PARAM (Slave parameter set of the specified DP-Slave)
 127 DP_AREA_BUS_PARAM
 129 DP_AREA_STAT_COUNT (not implemented yet)
 255 no local access protection
 all other values are reserved

DP Services

User Manual Page: 49

Data Block for Response and Confirmation:
Data Structure T_DP_START_SEQ_RES_CON

USIGN16 status OK, DS, NA, RS, RR, UE, TO, FE, RE, NE, AD, IP, NI, SE, SC,
 EA, LE, RE
USIGN8 max_len_data_unit 1..DP_MAX_DOWNLOAD_DATA_LEN
USIGN8 dummy alignment byte

End_Seq

Service Description Block for Request:
USIGN16 comm_ref not used
USIGN8 layer DP/DP_USR
USIGN8 service DP_END_SEQ
USIGN8 primitive REQ/IND
INT8 invoke_id not used
INT16 result not used

Data Block for Request:
Data Structure T_DP_END_SEQ_REQ

USIGN8 rem_add M1 station address
USIGN8 dummy alignment byte

Data Block for Indication:
Data Structure T_DP_END_SEQ_IND

USIGN8 rem_add M2 station address
USIGN8 dummy alignment byte

Service Description Block for Response and Confirmation:
USIGN16 comm_ref not used
USIGN8 layer DP/DP_USR
USIGN8 service DP_END_SEQ
USIGN8 primitive RES/CON
INT8 invoke_id not used
INT16 result POS/NEG

Data Block for Response and Confirmation:
Data Structure T_DP_END_SEQ_RES_CON

USIGN16 status OK, DS, NA, RS, RR, UE, TO, FE, RE, NI, SE, NE, AD, EA, LE,
 NC

End_Seq_Loc

Service Description Block for local Indication:
USIGN16 comm_ref not used
USIGN8 layer DP_USR
USIGN8 service DP_END_SEQ_LOC
USIGN8 primitive IND
INT8 invoke_id not used
INT16 result not used

Data Block for Request:
Data Structure T_DP_END_SEQ_LOC_IND

USIGN16 status TO

PROFIBUS Application Program Interface

Page: 50 PROFIBUS

This indication is used to inform about local time-outs during up-/download sequences. The time is based on
the time-out value within the "Start_Seq" service.

DP Services

User Manual Page: 51

4.4.3 Act_Para_Brct

This service will be sent to one or many DP Slaves to activate a new Bus Parameter Set. The Bus
Parameter Set must have been downloaded to all affected stations before!

If a new baud rate is selected all bus stations must be informed in order to switch to the new rate. That is the
reason why the service is unconfirmed. Currently only the Bus Parameter Set can be influenced.

All other mode changes to be handled remotely will be affected by means of the 'Act_Param' service.

In Softing´s DP Master (class 1) software the local service "Act_Param_Loc" should be used to activate the
new Bus Parameter Set when the user receives a DP_ACT_PARA_BRCT.ind (see chapter "Local / Remote
Services" for details).

Service Description Block for Request:
USIGN16 comm_ref not used
USIGN8 layer DP/DP_USR
USIGN8 service DP_ACT_PARA_BRCT
USIGN8 primitive REQ/IND
INT8 invoke_id not used
INT16 result not used

Data Block for Request and Indication:
Data Structure T_DP_ACT_PARA_BRCT_REQ_IND

USIGN8 rem_add 0..125, DP_GLOBAL_STATION_ADDRESS
USIGN8 area_code DP_AREA_BUS_PARAM

Service Description Block for local Confirmation:
USIGN16 comm_ref not used
USIGN8 layer DP_USR
USIGN8 service DP_ACT_PARA_BRCT
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS/NEG

Data Block for local Confirmation:
Data Structure T_DP_ACT_PARA_BRCT_CON

USIGN16 status OK, DS

PROFIBUS Application Program Interface

Page: 52 PROFIBUS

4.4.4 Act_Param

By means of this service the protocol stack of a DP Master (class 1) can be remotely controlled. The service
allows the following settings:

• activation / deactivation of DP Slaves (influences the DP_SL_ACTIVE flag in the DP Slave parameter
set)

• Bus Parameter Set activation without changing baud rates (use "Act_Para_Brct" instead)

• operation mode selection of the DP Master (class 1) (STOP, CLEAR, OPERATE)

In Softing´s DP Master (class 1) software the service has to be mapped onto the local counterpart
"Act_Param_Loc" by the user (see chapter "Local / Remote Services" for details).

Service Description Block for Request:
USIGN16 comm_ref not used
USIGN8 layer DP/DP_USR
USIGN8 service DP_ACT_PARAM
USIGN8 primitive REQ/IND
INT8 invoke_id not used
INT16 result not used

Data Block for Request:
Data Structure T_DP_ACT_PARAM_REQ

USIGN8 rem_add M1 station address
USIGN8 area_code parameter set to be influenced19
USIGN8 activate area_code dependent value20
USIGN8 dummy alignment byte

Data Block for Indication:
Data Structure T_DP_ACT_PARAM_IND

USIGN8 rem_add M2 station address
USIGN8 area_code see .req
USIGN8 activate see .req
USIGN8 dummy alignment byte

Service Description Block for Response and Confirmation:
USIGN16 comm_ref not used

19 0..125 DP_AREA_SLAVE_PARAM (Slave parameter set of the specified DP-Slave)
 127 DP_AREA_BUS_PARAM no baud rate changes!
 128 DP_AREA_SET_MODE
 all other values are reserved

20 80H DP_SLAVE_ACTIVATE (area_code = DP_AREA_SLAVE_PARAM)
 00H DP_SLAVE_DEACTIVATE
 FFH DP_BUS_PAR_ACTIVATE (area_code = DP_AREA_BUS_PARAM)
 00H DP_OP_MODE_OFFLINE (area_code = DP_AREA_SET_MODE)
 40H DP_OP_MODE_STOP
 80H DP_OP_MODE_CLEAR
 C0H DP_OP_MODE_OPERATE

DP Services

User Manual Page: 53

USIGN8 layer DP/DP_USR
USIGN8 service DP_ACT_PARAM
USIGN8 primitive RES/CON
INT8 invoke_id not used
INT16 result POS/NEG

Data Block for Response and Confirmation:
Data Structure T_DP_ACT_PARAM_RES_CON

USIGN16 status OK, DS, NA, RS, RR, UE, TO, FE, RE, NE, AD, IP, SC, NI, DI,
 EA, LE

PROFIBUS Application Program Interface

Page: 54 PROFIBUS

4.4.5 Get_Master_Diag

By means of this service the DP Master (class 2) can find out the current status of a specified DP Master
(class 1) or get the complete diagnostic data from all assigned DP Slaves. Additionally system-wide and
station specific diagnosis can be requested.

Service Description Block for Request and Indication:
USIGN16 comm_ref not used
USIGN8 layer DP
USIGN8 service DP_GET_MASTER_DIAG
USIGN8 primitive REQ/IND
INT8 invoke_id not used
INT16 result not used

Data Block for Request:
Data Structure T_DP_GET_MASTER_DIAG_REQ

USIGN8 rem_add 0..125 (DP Master class 1)
USIGN8 identifier information type21

Data Block for Indication:
Data Structure T_DP_GET_MASTER_DIAG_IND

USIGN8 req_add 0..125 (DP Master class 2)
USIGN8 identifier information type

Service Description Block for Response and Confirmation:
USIGN16 comm_ref not used
USIGN8 layer DP_USR
USIGN8 service DP_GET_MASTER_DIAG
USIGN8 primitive RES/CON
INT8 invoke_id not used
INT16 result POS/NEG

Data Block for Response and Confirmation:
Data Structure T_DP_GET_MASTER_DIAG_RES_CON

USIGN16 status OK, DS, NA, RS, RR, UE, RE, TO, FE, NE, IP, AD, EA, LE
USIGN16 data_len 0..DP_MAX_MASTER_DIAG_LEN
OCTET diagnostic data [data_len]

21 0..125 DP_DIAG_SLAVE_DATA (Diagnostic data of the specified DP-Slave)
 126 DP_DIAG_SYSTEM_DIAGNOSTIC
 127 DP_DIAG_MASTER_STATUS
 128 DP_DIAG_DATA_TRANSFER_LIST
 129..255 reserved

DP Services

User Manual Page: 55

4.5 DDLM SERVICE INTERFACE

The PROFIBUS DP Direct Data Link Mapper (DDLM) offers local functions and data transfer functions to be
used by the User Interface (USIF) of a DP Master (Class 1) or by the application of a DP Master (Class 2).

In the latter case the DDLM functions are visible at the interface between DP protocol stack and DP appli-
cation.

In the following the DDLM functions which may be used by a DP Master (Class 2) are described.

The programmer of DP-User application must be aware that some DDLM services may influence the correct
operation of the DP Master (class 1)!

PROFIBUS Application Program Interface

Page: 56 PROFIBUS

4.5.1 Set_Prm

This service is used to transmit parameterization data to a DP Slave. Issuing of that command may be done
by a DP Master (class 1) (out of the Slave Parameter Set) or the user of a DP Master (class 2).

It is possible to send parameterization data also in the operation phases of the protocol stack
(CLEAR/OPERATE). That means DP Slave operation parameter may be changed at any time (see also "0
Set_Prm_Loc" for more information).

Service Description Block for Request:
USIGN16 comm_ref not used
USIGN8 layer DP
USIGN8 service DP_SET_PRM
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data Block for Request:
Data Structure T_DP_SET_PRM_REQ

USIGN8 rem_add 0..DP_DEFAULT_SLAVE_ADDRESS
USIGN8 dummy alignment byte
T_DP_PRM_DATA prm_data

Data Structure T_DP_PRM_DATA

USIGN16 prm_data_len 9..DP_MAX_PRM_DATA_LEN (high/low)
OCTET station_status DP_PRM_xxx
OCTET wd_fact_1 watch dog factors
OCTET wd_fact_2 t [s] = 10[ms]*wd_fact_1*wd_fact_2
OCTET min_tsdr t[bit]
USIGN16 ident_number PNO ident number
OCTET group_ident group member bits
OCTET prm_user_data [0..DP_MAX_USER_PRM_DATA_LEN]

Service Description Block for Confirmation:
USIGN16 comm_ref not used
USIGN8 layer DP_USR
USIGN8 service DP_SET_PRM
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS/NEG

Data Block for Confirmation:
Data Structure T_DP_SET_PRM_CON

USIGN16 status OK, DS, NA, RS, RR, UE, RE

DP Services

User Manual Page: 57

4.5.2 Chk_Cfg

This service has two meanings: First it is used to deliver configuration data to a DP Slave. Second it is
intended to be used for configuration checking.

The DP Slave compares the transmitted configuration data with the current data set. If there are incon-
sistencies between those two sets of data the cyclic data exchange cannot be established. Results of that
comparison may be obtained via Slave diagnosis.

Service Description Block for Request:
USIGN16 comm_ref not used
USIGN8 layer DP
USIGN8 service DP_CHK_CFG
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data Block for Request:
Data Structure T_DP_CHK_CFG_REQ

USIGN8 rem_add 0..126
USIGN8 dummy alignment byte
T_DP_CFG_DATA cfg_data

Data Structure T_DP_CFG_DATA

USIGN16 cfg_data_len 2..DP_MAX_CFG_DATA_LEN (high/low)
OCTET cfg_data [cfg_data_len - 2] see EN 50170/2 (DP) , chapter DDLM_Chk_Cfg

Service Description Block for Confirmation:
USIGN16 comm_ref not used
USIGN8 layer DP_USR
USIGN8 service DP_CHK_CFG
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS/NEG

Data Block for Confirmation:
Data Structure T_DP_CHK_CFG_CON

USIGN16 status OK, DS, NA, RS, RR, UE, RE

PROFIBUS Application Program Interface

Page: 58 PROFIBUS

4.5.3 Get_Cfg

Any DP Master can read the current configuration of a DP Slave. Thus the service is very useful if the
current configuration of the DP Slave is unknown. Together with the service "Slave_Diag" the whole para-
meter set of any DP Slave can be obtained.

The 'Real_Cfg_Data' of the DP Slave will be delivered via the communication system.

Service Description Block for Request:
USIGN16 comm_ref not used
USIGN8 layer DP
USIGN8 service DP_GET_CFG
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data Block for Request:
Data Structure T_DP_GET_CFG_REQ

USIGN8 rem_add 0..DP_DEFAULT_SLAVE_ADDRESS
USIGN8 dummy alignment byte

Service Description Block for Confirmation:
USIGN16 comm_ref not used
USIGN8 layer DP_USR
USIGN8 service DP_CHK_CFG
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS/NEG

Data Block for Confirmation:
Data Structure T_DP_GET_CFG_CON

USIGN16 status OK, DS, NA, RS, RR, UE, RE
USIGN8 rem_add 0..DP_DEFAULT_SLAVE_ADDRESS
USIGN8 dummy alignment byte
T_DP_CFG_DATA real_cfg_data 2..DP_MAX_CFG_DATA_LEN

See "Chk_Cfg" for T_DP_CFG_DATA description.

DP Services

User Manual Page: 59

4.5.4 Slave_Diag

The current DP Slave status can be read via PROFIBUS by means of this service.

The status information is encoded into the diagnostic data unit. During the startup phase the service call will
be repeated cyclically as long as no valid diagnostic data have been received by DP Master (class 1).

Service Description Block for Request:
USIGN16 comm_ref not used
USIGN8 layer DP
USIGN8 service DP_SLAVE_DIAG
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data Block for Request:
Data Structure T_DP_SLAVE_DIAG_REQ

USIGN8 rem_add 0..DP_DEFAULT_SLAVE_ADDRESS
USIGN8 dummy alignment byte

Service Description Block for Confirmation:
USIGN16 comm_ref not used
USIGN8 layer DP_USR
USIGN8 service DP_SLAVE_DIAG
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS/NEG

Data Block for Confirmation:
Data Structure T_DP_SLAVE_DIAG_CON

USIGN16 status OK, DS, NA, RS, UE, NR, RE
USIGN8 rem_add 0..DP_DEFAULT_SLAVE_ADDRESS
USIGN8 dummy alignment byte
USIGN16 diag_data_len 0..DP_MAX_SLAVE_DIAG_DATA_LEN
OCTET diag_data [diag_data_len]

PROFIBUS Application Program Interface

Page: 60 PROFIBUS

If diagnostic data has been available the following structure can be used for the analysis:

Data Structure T_DP_DIAG_DATA

OCTET station_status_1 DP_DIAG_1_xxx22
OCTET station_status_2 DP_DIAG_2_xxx23
OCTET station_status_3 DP_DIAG_3_xxx24
USIGN8 master_add master address which has parameterized the
 DP Slave
USIGN16 ident_number PNO ident
OCTET ext_diag_data [diag_data_len - 6]

22 Bit 7 DP_DIAG_1_MASTER_LOCK (influenced by DP Master)
 Bit 6 DP_DIAG_1_PRM_FAULT
 Bit 5 DP_DIAG_1_INVALID_SLAVE_RES (influenced by DP Master)
 Bit 4 DP_DIAG_1_NOT_SUPPORTED
 Bit 3 DP_DIAG_1_EXT_DIAG
 Bit 2 DP_DIAG_1_CFG_FAULT
 Bit 1 DP_DIAG_1_STATION_NOT_READY
 Bit 0 DP_DIAG_1_STATION_NON_EXISTENT (influenced by DP Master)
23 Bit 7 DP_DIAG_2_DEACTIVATED (influenced by DP Master)
 Bit 5 DP_DIAG_2_SYNC_MODE
 Bit 4 DP_DIAG_2_FREEZE_MODE
 Bit 3 DP_DIAG_2_WD_ON
 Bit 2 DP_DIAG_2_DEFAULT
 Bit 1 DP_DIAG_2_STAT_DIAG
 Bit 0 DP_DIAG_2_PRM_REQ
24 Bit 7 DP_DIAG_3_EXT_DIAG_OVERFLOW

DP Services

User Manual Page: 61

4.5.5 RD_Inp / RD_Outp

The user of any DP Master can read a snapshot of the current I/O values of a specified DP Slave.

The DP Slave must already be in the data exchange mode. Use of that service has no influence on the cyclic
data exchange with the assigned DP Master (class 1).

The service is intended for diagnostic and configuration purposes only.

Service Description Block for Request:
USIGN16 comm_ref not used
USIGN8 layer DP
USIGN8 service DP_RD_INP / DP_RD_OUTP
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data Block for Request:
Data Structure T_DP_RD_INP_REQ
Data Structure T_DP_RD_OUTP_REQ

USIGN8 rem_add 0..126
USIGN8 dummy alignment byte

Service Description Block for Confirmation:
USIGN16 comm_ref not used
USIGN8 layer DP_USR
USIGN8 service DP_RD_INP / DP_RD_OUTP
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS/NEG

Data Block for Confirmation:
Data Structure T_DP_RD_INP_CON

USIGN16 status OK, DS, NA, RS, UE, NR, RE
USIGN8 rem_add 0..DP_DEFAULT_SLAVE_ADDRESS
USIGN8 dummy alignment byte
USIGN16 inp_data_len 0..DP_MAX_INPUT_DATA_LEN
OCTET inp_data [inp_data_len]

Data Structure T_DP_RD_OUTP_CON

USIGN16 status OK, DS, NA, RS, UE, NR, RE
USIGN8 rem_add 0..DP_DEFAULT_SLAVE_ADDRESS
USIGN8 dummy alignment byte
USIGN16 outp_data_len 0..DP_MAX_OUTPUT_DATA_LEN
OCTET outp_data [outp_data_len]

PROFIBUS Application Program Interface

Page: 62 PROFIBUS

4.5.6 Data_Exchange

This service allows the local DP user to send output data to a DP Slave and receive input data at the
same time. The number of transmitted I/O values must have been determined during the configuration
procedure.

If diagnostic or error messages are present in the DP Slave a high prior response frame indicates this to the
user. The diag flag distinguishes between diagnostic and error messages.

Service Description Block for Request:
USIGN16 comm_ref not used
USIGN8 layer DP
USIGN8 service DP_DATA_EXCHANGE
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data Block for Request:
Data Structure T_DP_DATA_EXCHANGE_REQ

USIGN8 rem_add 0..DP_MAX_SLAVE_ADDRESS
USIGN8 dummy alignment byte
USIGN16 outp_data_len 0..DP_MAX_OUTPUT_DATA_LEN
OCTET outp_data [outp_data_len]

Service Description Block for Confirmation:
USIGN16 comm_ref not used
USIGN8 layer DP_USR
USIGN8 service DP_DATA_EXCHANGE
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS/NEG

Data Block for Confirmation:
Data Structure T_DP_DATA_EXCHANGE_CON

USIGN16 status OK, DS, NA, RS, RR, UE, RE
USIGN8 rem_add 0..DP_MAX_SLAVE_ADDRESS
BOOL diag_flag TRUE: diagnostic data available
USIGN16 inp_data_len 0..DP_MAX_INPUT_DATA_LEN
OCTET inp_data [inp_data_len]

DP Services

User Manual Page: 63

4.5.7 Global_Control

This service allows the DP Master to send control commands to one or many assigned DP Slaves. Grouping
of DP Slaves is possible by means of the Group_Selector bit (multicast service).

The supported control commands depend on the destination station and must have been checked with
the "Set_Prm / Slave_Diag" services.

Service Description Block for Request:
USIGN16 comm_ref not used
USIGN8 layer DP
USIGN8 service DP_GLOBAL_CONTROL
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data Block for Request:
Data Structure T_DP_GLOBAL_CONTROL_REQ

USIGN8 rem_add 0..126, DP_GLOBAL_STATION_ADDRESS
USIGN8 dummy alignment byte
USIGN8 control_command command bits25, see also EN 50170/2 (DP)
USIGN8 group_select see T_DP_PRM_DATA

Service Description Block for Confirmation:
USIGN16 comm_ref not used
USIGN8 layer DP_USR
USIGN8 service DP_GLOBAL_CONTROL
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS/NEG

Data Block for Confirmation:
Data Structure T_DP_GLOBAL_CONTROL_CON

USIGN16 status OK, DS, NO, IV
USIGN8 rem_add 0..126, DP_GLOBAL_STATION_ADDRESS
USIGN8 dummy alignment byte

25 Bit 5 DP_CONTROL_SYNC
 Bit 4 DP_CONTROL_UNSYNC
 Bit 3 DP_CONTROL_FREEZE
 Bit 2 DP_CONTROL_UNFREEZE
 Bit 1 DP_CONTROL_CLEAR_DATA
 Bits 0, 6, 7 reserved (cleared)

PROFIBUS Application Program Interface

Page: 64 PROFIBUS

4.5.8 Set_Slave_Add

This service can be used to modify the station address of a DP Slave.

DP Slaves which do not have any hardware address assignments (switches, EEPROM, etc.) automatically
gain the default address (126). Only if the transmitted ident number has matched the stored number the new
address will be accepted.

Further address assignment may be forbidden using the "No_Add_Chg" flag.

The service can be issued by a DP Master (class 2) only.

Service Description Block for Request:
USIGN16 comm_ref not used
USIGN8 layer DP
USIGN8 service DP_SET_SLAVE_ADD
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data Block for Request:
Data Structure T_DP_SET_SLAVE_ADD_REQ

USIGN8 rem_add 0..DP_DEFAULT_SLAVE_ADDRESS
USIGN8 dummy alignment byte
USIGN16 rem_slave_data_len 0..DP_MAX_REM_SLAVE_DATA_LEN
USIGN8 new_slave_add 0..DP_MAX_SLAVE_ADDRESS
USIGN8 ident_number_high PNO ident; alignment problem!
USIGN8 ident_number_low
BOOL no_add_chg TRUE: address change after reset only
OCTET rem_slave_data [rem_slave_data_len]

Service Description Block for Confirmation:
USIGN16 comm_ref not used
USIGN8 layer DP_USR
USIGN8 service DP_SET_SLAVE_ADD
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS/NEG

Data Block for Confirmation:
Data Structure T_DP_SET_SLAVE_ADD_CON

USIGN16 status OK, DS, NA, RS, RR, UE, RE
USIGN8 rem_add 0..DP_DEFAULT_SLAVE_ADDRESS
USIGN8 dummy alignment byte

DP Services

User Manual Page: 65

5 DATA INTERFACE

The Data Interface is provided by means of the PROFIBUS Application Program Interface (PAPI - see
document "User Interface"). It is intended for shared use by host and controller software via DPRAM. It
supports fast cyclic I/O data exchange between the user of the DP Master and the assigned DP Slaves.

The layout of the shared memory area is dependent on the chosen Address Assigned Mode. The Data Inter-
face provides the mean to achieve offset and length addressing within a larger memory block.

Two functions handle the DPRAM access with regard to mutual exclusion problems if necessary. They are
called from the host using the PAPI functions "profi_set_data" and "profi_get_data".

The functions have the following prototype:

profi_set_data

Function prototype:
extern INT16 profi_set_data
 (
 IN USIGN8 data_id,
 IN USIGN16 offset,
 IN USIGN16 data_size,
 IN VOID FAR_D *data_ptr
)

Function parameter description:
data_id identifier of the specified memory area
offset offset within the data structure
data_size number of bytes to be written to the DPRAM
data_ptr data block to be written

Function return values:
E_OK (00) function executed correctly
E_SERVICE_CONSTR_CONFLICT (23) service currently not executable, access
 semaphore has been locked by the controller
E_SERVICE_NOT_SUPPORTED (24) identifier is not supported

profi_get_data

Function prototype:
extern INT16 profi_get_data
 (
 IN USIGN8 data_id,
 IN USIGN16 offset,
 OUT USIGN16 FAR_D *data_size,
 INOUT VOID FAR_D *data_ptr
)

Function parameter description:
data_id identifier of the specified memory area
offset offset within the data structure
data_size number of bytes to be read from the DPRAM, returns the number of bytes actually read
data_ptr data block to be copied to

PROFIBUS Application Program Interface

Page: 66 PROFIBUS

Function return values:
E_OK (00) function executed correctly
E_SERVICE_CONSTR_CONFLICT (23) service currently not executable, access
 semaphore has been locked by the controller
E_SERVICE_NOT_SUPPORTED (24) identifier is not supported

Shared memory access without DPRAM

For applications without DPRAM the protocol stack automatically provides the DP Slave data and status
areas out of the dynamic memory pool. Accessing these areas may be done by means of the following as
"extern" defined pointers:

• slave_image_ptr, slave_image_len: pointer and length of the DP Slave I/O data area

• slave_status_ptr, DP_STATUS_INFO_LEN: pointer and length of the DP status information field;
in cases the status is not supported the "slave_status_ptr" will be NULL

The user must take care on data consistency by himself. If the service "Data_Transfer" is used and no data
access by the user occurs during the service execution then data consistency is gained automatically.

DP Services

User Manual Page: 67

5.1 DP SLAVE I/O DATA ACCESS

To access the DP Slave input / output data the functions "profi_set_data" and "profi_get_data" can be used.
The location of the input / output bytes of a specified DP Slave depends on the DPRAM Address Assignment
Mode (AAM).

To calculate the correct offset and address the respective I/O bytes the following formulas may be used (for
the parameter description see service "FMB_Set_Configuration"):

ARRAY - Address Assignment Mode

in_offset = (slave_address - lowest_slave_address) * max_slave_input_len;

out_offset = (slave_address - lowest_slave_address) * max_slave_output_len +
 offset_inputs;

USER DEFINED - Address Assignment Mode

T_DP_AAT_DATA *aat_data_ptr = ...; /* see Slave Parameter Set */

in_offset [i] = aat_data_ptr->offset_input [i];

out_offset [i] = aat_data_ptr->offset_output [i];

COMPACT - Address Assignment Mode

T_DP_AAT_DATA *aat_data_ptr = ...; /* see Slave Parameter Set */

in_offset = aat_data_ptr->offset_input [0];

out_offset = aat_data_ptr->offset_output [0];

IO-BLOCK - Address Assignment Mode

see chapter 3.6.4

5.2 STATUS INFORMATION

The Status Information array is provided to report the current operating state of the DP communication parti-
cipants to the user. It describes always the state of all activated stations (DP Slaves, DP Master) during the
last polling cycle.

The Status Information is optional and can be enabled/disabled via compile time variables. If Status
Information is enabled the following features can be used:

PROFIBUS Application Program Interface

Page: 68 PROFIBUS

DP protocol stack DP user

One status byte per communication station will be updated cyclically by the DP Master (class 1) before
finishing the polling cycle. It delivers an image about the error state of any activated Slave and the existence
of diagnostic messages. The user may evaluate the information to decide whether diagnostic or process
data has to be read from a specified DP Slave.

The end of DP Master polling cycles can only recognized by means of a DATA_TRANSFER.con in the
initialisation mode cyclic_data_transfer = FALSE (see service INIT_MASTER).

The following figure depicts the structure of the status information array:

 DPRAM PROFIBUS DP status array

Memory Descriptor

STATUS
station 0

HOST

CONTROLLER 1 Octet

status_ptr

STATUS
station 1

STATUS
station 2

... STATUS
station 126

STATUS
station 125

Figure 5-1: DPRAM status information array

Coding of the Status Information Bits

Station type identifier:
Bit 7 DP_STATE_STATION_TYPE 1: DP_STATE_MASTER_STATION
 0: DP_STATE_SLAVE_STATION

DP Slave Status Octet:
Bit 6..2 reserved (cleared)
Bit 1 DP_STATE_SLAVE_DIAG_DATA 1: new diagnostic data available
Bit 0 DP_STATE_SLAVE_ERROR 1: no valid communication to the slave

DP Master (class 1) Status Octet:
Bit 6..2 reserved (cleared)
Bit 1 DP_STATE_MASTER_DIAG_DATA 1: diagnostic data transmission to the
 DP Master (class 2) is in process

Bit 0 DP_STATE_MASTER_UP_DOWN_LOAD 1: upload / download service is in process

DP Services

User Manual Page: 69

6. DP STATUS AND ERROR CODES

6.1. CODING CONVENTIONS

Each DP service confirmation returns an USIGN16 status value which is defined as follows:

• USIGN8 (low byte): Contains the error code. This byte indicates general errors like "Invalid Para-
meter", "Not Implemented", etc.

• USIGN8 (high byte): This byte is used only if an error extension is available. By means of this byte
additional error or status information are reported to the user.

Example: Error Code = 0x03C7 E_DP_WRONG_SLAVE_ADD and E_DP_IP

6.2. ERROR CODE DEFINITIONS

6.2.1. Error Codes

E_DP_OK = 0x00: OK, acknowledgement positive

E_DP_UE = 0x01: remote user error (the reason is not visible for this station)

E_DP_RR = 0x02: resources at remote station are insufficient (e.g. no memory at service access point
 (SAP) available at this time)

E_DP_RS = 0x03 service or service access point (SAP) at remote station is deactivated

E_DP_RA = 0x04 access of remote service access point (SAP) has been blocked

E_DP_NA = 0x11 no reaction from remote station, i.e. the station physically does not respond
 (check power supply, cabling or the state of that remote station)

E_DP_DS = 0x12 local entity disconnected, i.e. this station was not able to send
 (check the bus connection of this station)

E_DP_NO = 0x13 not possible in this state, i.e. the requested service cannot be executed in this state
 of the station or is not possible under these circumstances (see error extension)

E_DP_LR = 0x14 local resource not available (internal FDL error)

E_DP_IV = 0x15 invalid parameter in request, i.e. the service request contains at least one syntac-
 tically wrong parameter (e.g. range limits exceeded, etc.)

E_DP_TO = 0x16 service timeout expired

E_DP_FE = 0xC1 format error in request frame, e.g. during Master / Master communication an invalid
 request has been received from the remote master

PROFIBUS Application Program Interface

Page: 70 PROFIBUS

E_DP_NI = 0xC2 the requested function is not implemented

E_DP_AD = 0xC3 access denied

E_DP_EA = 0xC4 area too large, e.g. the used data block is too large to fit in the memory of the
 remote station

E_DP_LE = 0xC5 data block length exceeded, i.e. the data block length exceeds the provided area

E_DP_RE = 0xC6 format error in response frame, e.g. during Master / Master communication an
 invalid response has been received from the remote master

E_DP_IP = 0xC7 invalid parameter, i.e. the service request contains at least one unknown or wrong
 parameter (e.g. slave not available because the slave has not been downloaded)

E_DP_SC = 0xC8 sequence conflict, i.e. the service is not executable at this time and operation mode

E_DP_SE = 0xC9 sequence error, i.e. the service was used in the wrong context
 (e.g. DP_END_SEQ before DP_START_SEQ)

E_DP_NE = 0xCA area non-existent, e.g. a non-existent slave parameter set cannot be uploaded, etc.

E_DP_DI = 0xCB data incomplete

E_DP_NC = 0xCC the used master parameter set is incompatible

6.2.2. Error Code Extensions

E_DP_DATA_ALIGNMENT = 0x01 - the slave parameter set is inconsistent (e.g. wrong length -
 check slave_para_len, cfg_len, prm_len, add_tab_len,
 user_len and the alignment of the format)
 - the starting offset of input or output data is odd and must
 be aligned to an even address

E_DP_TOO_MANY_SLAVES = 0x02 - the number of slave parameter sets exceeds
 Max_Number_Slaves (see FMB_Set_Configuration)

E_DP_WRONG_SLAVE_ADD = 0x03 - the used slave address is out of range (0..125, 126)
 - the slave address is identical with this station
 - DP_AAM_ARRAY: the slave address is lower than
 Lowest_Slave_Address (see DP_Init_Master)
 - DP_AAM_ARRAY: the slave address is higher than
 Lowest_Slave_Address + Max_Number_Slaves - 1

E_DP_AAM_NOT_SUPPORTED = 0x04 - the Address Assignment Mode "User Defined" cannot be
 used with this hard- or firmware release

E_DP_TOO_FEW_DIAG_ENTRIES = 0x05 - not used

DP Services

User Manual Page: 71

E_DP_WRONG_PRM_DATA_LEN = 0x06 - the parameter data set by means of service
 DP_Set_Prm_Loc has a different length than used during
 DP_Download_Loc
 - the parameter data length range was exceeded (7..244)

E_DP_WRONG_CFG_DATA_LEN = 0x07 - the config data length range was exceeded (1..244)

E_DP_WRONG_DIAG_LEN = 0x08 - not used

E_DP_WRONG_BUS_PARA_LEN = 0x09 - the bus parameter set does not fit the configured length
 (see service FMB_Set_Configuration -
 Max_Bus_Para_Len)
 - the used add_offset exceeds the length of the bus
 parameter set

E_DP_WRONG_SLAVE_PARA_LEN = 0x0A - the slave parameter set does not fit the configured length
 (see service FMB_Set_Configuration -
 Max_Slave_Para_Len)
 - the used add_offset exceeds the length of the bus
 parameter set

E_DP_WRONG_IO_DATA_LEN = 0x0B - the number of inputs or outputs defined in the slave
 parameter set exceeds the configured length (see service
 FMB_Set_Configuration - Max_Slave_Input_Len,
 Max_Slave_Output_Len)
 - the number of inputs or outputs defined for that slave are
 longer than allowed (0..244)

E_DP_NOT_ENOUGH_MEMORY = 0x0C - not used

E_DP_WRONG_USIF_STATE = 0x0D - the master is not able to execute the requested service in
 the current state:
 - FMB_Set_Configuration and / or DP_Init_Master were not
 called (still OFFLINE operation mode)
 - DP_Act_Param_Loc can only change to the next operation
 mode (e.g. STOP to CLEAR, not STOP to OPERATE)

E_DP_SLAVE_ACCESS_DENIED = 0x0E - not used

E_DP_WRONG_AREA_CODE = 0x0F - during a download or upload sequence different
 area_codes were detected
 - the used area_code is out of range (0..0x81, 0xFF)

E_DP_NOT_SUPPORTED = 0x10 - not used

E_DP_PRM_DATA_FAULT = 0x11 - the slave watchdog factor values are zero and the
 watchdog has been enabled

E_DP_CFG_DATA_FAULT = 0x12 - not used

PROFIBUS Application Program Interface

Page: 72 PROFIBUS

E_DP_AAT_DATA_FAULT = 0x13 - DP_AAM_ARRAY: aat_data_len is invalid (< 2)
 - DP_AAM_COMPACT: the number of inputs or outputs
 within the Address Assignment Table is inconsistent to the
 config data
 - DP_AAM_COMPACT: aat_data_len is invalid (6 or 8)
 - DP_AAM_DEFINED: the number of inputs or outputs
 within the Address Assignment Table is inconsistent to the
 config data
 - DP_AAM_DEFINED: aat_data_len is invalid
 (4 + 2 * number_inputs+ 2 * number_outputs)

E_DP_USER_DATA_FAULT = 0x14 - not used

E_DP_SLAVE_PARA_FAULT = 0x15 - an invalid sl_flag within the slave parameter set was
 detected (0x80: Active, 0x40: New_Prm, 0x20: Fail_Safe)

E_DP_AREA_NOT_ACCESSED = 0x16 - the service DP_End_Seq was received but no upload or
 download has occured

E_DP_WRONG_BAUDRATE = 0x17 - an illegal baudrate constant was used
 (use DP_KBAUD_xxx)

E_DP_WRONG_BP_FLAG = 0x18 - an invalid bp_flag was detected
 (0x80: DP_BP_ERROR_ACTION - Autoclear)

E_DP_WRONG_FDL_STATE = 0x19 - not used

E_DP_WRONG_ACTIVATION = 0x1A - an invalid (de)activation constant was used
 (0x80: DP_SLAVE_ACTIVATE,
 0x00:DP_SLAVE_DEACTIVATE,
 0xFF:DP_BUS_PAR_ACTIVATE,
 0x00: DP_OP_MODE_OFFLINE,
 0x40: DP_OP_MODE_STOP,
 0x80: DP_OP_MODE_CLEAR,
 0xC0: DP_OP_MODE_OPERATE)

E_DP_WRONG_MASTER_ADD = 0x1B - the master address is out of range (0..125)
 - the remote master address is identical with the local
 master address

E_DP_DPRAM_INIT_ERROR = 0x1C - not used (FMB_Set_Configuration.con [-] instead)

E_DP_WRONG_LEN = 0x1D - the upload or download data length is larger than allowed
 (0..240)

E_DP_WRONG_IDENTIFIER = 0x1F - the identifier of service DP_Get_Master_Diag is out of
 range (0..0x80)
 - the identifier of service DP_Get_Slave_Param is wrong or
 not supported by your firmware version

E_DP_LOAD_BUS_PARAMETER = 0x20 - the attempt to set new bus parameters by DP failed
 (illegal values within bus parameters or wrong state)

DP Services

User Manual Page: 73

E_DP_ACTIVATE_SAP = 0x21 - DP was not able to activate the necessary service access
 points (SAPs); another application might work corrupt

E_DP_WRONG_REMOTE_SERVICE = 0x22 - service DP_Init_Master detected an invalid value in
 parameter auto_remote_services:
 (0x80: DP_AUTO_GET_MASTER_DIAG,
 0x40: DP_AUTO_UPLOAD_DOWNLOAD_SEQ,
 0x20: DP_AUTO_ACT_PARAM)

PROFIBUS Application Program Interface

DP/V1 Services

Version 5.2
Rev. 00

Date: 17-October-1997

Softing AG
Richard-Reitzner-Allee 6
D-85540 Haar
Phone (++49) 89 45 65 6 - 0
Fax (++49) 89 45 65 6 - 399

 Copyright by Softing AG, 1989-2003
All rights reserved.

PROFIBUS User Manual

PROFIBUS Application Program Interface

Copyright Notice

All rights are reserved. No part of these instructions may be reproduced (printed material,
photocopies, microfilm or other method) or processed, copied or distributed using electronic
systems in any form whatsoever without prior written permission of Softing AG.

The producer reserves the right to make changes to the scope of supply as well as changes to
technical data, even without prior notice.

A great deal of attention was made to the quality and functional integrity in designing,
manufacturing and testing the system. However, no liability can be assumed for potential errors
that might exist or for their effects. Should you find errors please inform your distributor of the
nature of the errors and the circumstances under which they occur. We will be responsive to all
reasonable ideas and will follow up on them, taking measures to improve the product if
necessary.

We call your attention to the fact that the company name and trademark as well as product
names are, as a rule, protected by trademark, patent and product brand laws.

Copyright 1989-2003 by Softing AG, Haar

DP/V1 Services

User Manual Page: I

CONTENTS

1 SCOPE ...1

2 OVERVIEW ..2

3 DP/V1 INITIATE AND ABORT SERVICES..4

3.1 DP_INITIATE...4
3.2 DP_ABORT...8

4 DP/V1 READ AND WRITE SERVICES..10

4.1 DP_READ ...10
4.2 DP_WRITE..12

5 NEGATIVE CONFIRMATIONS, ERROR- AND RETURN CODES...14

5.1 NEGATIVE CONFIRMATIONS...14
5.2 RETURN CODES ...16

PROFIBUS Application Program Interface

Page: II PROFIBUS

DP/V1 Services

User Manual Page: 1

1 SCOPE

This manual describes the programming interface between PROFIBUS DP/V1 protocol software and
PROFIBUS DP/V1 application.

This manual does not describe the functionality of PROFIBUS DP/V1. Therefore, it is expected that the
reader is familiar with PROFIBUS DP/V1 and that he knows EN 50170/2.

Softing's PROFIBUS Application Program Interface provides uniform access to all service groups of the
PROFIBUS protocol. The common access functions are described in the "User Interface" part of the
PROFIBUS User Manual.

This manual describes the service-specific parameters and data for DP/V1 Master-Slave acyclic services
Class 2 (MSAC_C2) specified in PROFIBUS Draft Specification V1.13 (March 7,1997).

The DP/V1 specific types and constants are defined in the include file PB_DP.H.

PROFIBUS API

FMB
LLI

remote
FM7local

FM7

FDLIF

FDL

FMS

FAL

FM2

DP /
DP/V1

This document should be read in conjunction with the following parts of the PROFIBUS User Manual:

• "User Interface" (describes the uniform access functions to all PROFIBUS services)

• "Basic Management" (describes the management services common to all protocol components)

• "DP Services" (describes the DP services)

PROFIBUS Application Program Interface

Page: 2 PROFIBUS

2 OVERVIEW

DP/V1 provides services, which refers to MSAC_C2 Client functionality.

Simultaneous operation of DP/V1 and FMS is not possible. In this case all DP/V1 services will be
rejected. The operation mode for DP/V1 has to be set with the FMB_SET_CONFIGURATION service with
the parameters FMS_ACTIVE = PB_FALSE and DP_ACTIVE = PB_TRUE (see manual Basic Managment
chapter 3.1).

The service descriptions in this manual are grouped in Context Management Services and Data Transfer-
Services:

Context Management services are used to establish a connection and to release a connection.

Data Transfer services are used to read data from a slave and write data to a slave.

The following table shows the services and their appearance as Requests, Confirmations or Indications.

 MSAC_C2

Request
MSAC_C2

Confirmation
MSAC_C2
Indication

DP_INITIATE X X
DP_READ X X
DP_WRITE X X
DP_ABORT X X

Before using DP/V1 services, the DP protocol stack has to be in the state stop, clear or operate, otherwise
there would be no access to the physical layer (see manual DP Services chapter 3.2).

DP/V1 Services

User Manual Page: 3

Notes on Data Structures and Parameters

The DP/V1 specific types and constants are defined in the include file PB_DP.H.

All words, long-words, strings, arrays and records begin on even addresses. To accomplish this, fill bytes
had to be added in some places. These are always recognizable by their name dummy.

Data blocks do not contain pointers. If a data block contains one or more fields or lists of variable length,
then the length information of all variable-length fields is stored in the constant part. The fields of variable
length follow on the constant part.

Here is an example of such a data block:

constant parameters

field length

variable field

The variable data fields are shown between comment delimiters in the include file PB_DP.H to show their
position and structure, without forcing the programmer to use data structures of a specific length.
Nevertheless, the data must be entered at exactly this spot.

The service description block contains a result parameter. If a function returns as positive (result = POS) the
service-specific confirmation block will be passed. If the result is negative (result = NEG), then the error
structure T_DP_ERROR_CON is passed.

For negative confirmations a standard error structure T_DP_ERROR_CON is used. The error codes are not
noted explicitly for each service. The standard error structure and the error codes are described in chapter 5
“Negative Confirmations, Error- and Return Codes“.

PROFIBUS Application Program Interface

Page: 4 PROFIBUS

3 DP/V1 INITIATE AND ABORT SERVICES

The DP-Master (Class 2) uses the INITIATE- and ABORT services to establish or release a communication
relationship to the DP-Slave.

3.1 DP_INITIATE

DP_INITIATE establishs a connection to a slave.

Each connection is identified by its communication reference (comm_ref). The service DP_INITIATE
connects a comm_ref with a slave’s address.

The implementation supports several (DP_MAX_CHANNELS_MSAC2=30) parallel connections. On each
connection, there is only one service allowed at one time, except the DP_ABORT service, which is allowed
at any time.

Service-Description-Block for Request:

USIGN16 comm_ref 0.. DP_MAX_CHANNELS_MSAC2-1
USIGN8 layer DP
USIGN8 service DP_INITIATE
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data block for Request:

Data structure T_DP_INITIATE_REQ

USIGN8 rem_add remote station address (0..126)
USIGN8 reserved[3] reserved for future use
USIGN16 send_timeout control time for supervision in 10 ms units (0..65535)
OCTET features_supported[2] supported features of the master {0x01, 0x00}
OCTET profile_features_supported[2] supported features regarding used profiles {0x00, 0x00}
USIGN16 profile_ident_number profile ident
T_ADD_ADDR add_addr_param extended address scheme

DP/V1 Services

User Manual Page: 5

Service-Description-Block for Confirmation:

USIGN16 comm_ref 0.. DP_MAX_CHANNELS_MSAC2-1
USIGN8 layer DP_USR
USIGN8 service DP_INITIATE
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS

Data block for Confirmation:

Data structure T_DP_INITIATE_CON

USIGN16 status status (E_DP_OK)
USIGN8 rem_add remote station address (0..126)
USIGN8 max_len_data_unit maximum data-length, the slave can provide (1..240)
OCTET features_supported[2] supported features of the slave {0x01, 0x00}
OCTET profile_features_supported[2] supported features regarding used profiles {0x00, 0x00}
USIGN16 profile_ident_number profile ident number
T_ADD_ADDR add_addr_param extended address scheme

send_timeout and max_len_data_unit

• send_timeout, the base time interval, used by master and slave for initiating Idle-Sequences, to find out,
whether the Remote-Partner is still in operation

• max_len_data_unit, the maximum Data-Length, the slave supports.

Extended Address Scheme

The DP_INITIATE service offers the possibility to communicate over multiple interconnected networks.

• Data Transfer from one DP-Network to another DP-Network over a link

• Data Transfer from an alien network to DP-Network over a gateway

Data Structure T_ADD_ADDR

USIGN8 s_type indicates the presence of the optional network source address
USIGN8 s_len indicates the length of the s_addr parameter
USIGN8 d_type indicates the presence of the optional network destination
address
USIGN8 d_len indicates the length of the d_addr parameter
T_ADDR s_addr additional source address information
T_ADDR d_addr additional destination address information

Data Structure T_ADDR

USIGN8 api application process instance
USIGN8 scl security level
OCTET network_address[6] identifies the network address
OCTET mac_address[length-8] identifies the MAC address

PROFIBUS Application Program Interface

Page: 6 PROFIBUS

If the extended address scheme is not used (default case), the parameter T_ADDR_ADDR add_addr_param
in the DP_INITIATE-Request service has the following content:

Data Structure T_ADD_ADDR

USIGN8 s_type 0
USIGN8 s_len 2
USIGN8 d_type 0
USIGN8 d_len 2
T_ADDR s_addr see below
T_ADDR d_addr see below

Data Structure T_ADDR

USIGN8 api 0..255, usually 0
USIGN8 scl 0..255, usually 0

If the extended address scheme is used (extended case), the parameter T_ADDR_ADDR add_addr_param
in the DP_INITIATE-Request service has the following content:

Data Structure T_ADD_ADDR

USIGN8 s_type 0 or 1
USIGN8 s_len s_type = 0, length of s_addr is 2
 s_type = 1, length of s_addr is at least 8
USIGN8 d_type 0 or 1
USIGN8 d_len d_type = 0, length of d_addr is 2
 d_type = 1, length of d_addr is at least 8
T_ADDR s_addr see below
T_ADDR d_addr see below

Data Structure T_ADDR

USIGN8 api 0..255, usually 0
USIGN8 scl 0..255, usually 0
OCTET network_address[6] use only if [d|s]_type = 1
OCTET mac_address[[d|s]_len-8] use only if [d|s]_type = 1

There are two macros (defined in PB_DP.H) to calculate the extended addresses s_addr and d_addr.

• DP_INITIATE_S_ADDR requires a pointer to a T_DP_INITIATE_REQ or a T_DP_INITIATE_CON and
gives a pointer of type T_ADDR to the s_addr field.

• DP_INITIATE_D_ADDR requires a pointer to a T_DP_INITIATE_REQ or a T_DP_INITIATE_CON and
gives a pointer of type T_ADDR to the d_addr field, provided that the entry s_len in the add_addr_param
field is set correctly.

According to PROFIBUS Draft Specification V1.13 (March 7,1997), the slave has to swap the s_addr and
the d_addr field in the response, the master simply passes those parameters without further checking.

DP/V1 Services

User Manual Page: 7

Technical Details

Initializing a connection requires some communication between master and slave. First, the master sends
the DP_INITIATE request to the slave’s resource manager. The slave sends a Resource-Management
request to the master and tells the master, whether there is a free SAP left on the slave and which one to
use. If there is no SAP free (because too many connections have already been opened), the user will
receive an DP_ABORT indication with abort reason DP_ABORT_FDL_RS. This error may occur after
aborting a connection to a slave and sending a DP_INITIATE request immediately afterwards. In this case
the error will be only temporay and will disappear when the slave has terminated its internal state-machines.
If the slave does not support DP/V1 this DP_ABORT indication will occur, too.

If there is a free SAP but the slave does not support the send-timeout interval requested by the master’s
user, there also will be an DP_ABORT indication with abort reason DP_ABORT_DDLM_ABT_STO. The
additional detail contains the minimum send_timeout interval that the slave supports actually . The master
can choose any greater send_timeout interval than the slaves minimum send_timeout interval (see also
chapter 3.2 DP_ABORT service).

Having received the Resource-Management request, the master polls the received SAP and gets a
DP_INITIATE confirmation, which will be passed to the user. The user should keep the max_len_data_unit,
as it limits the length of the data-buffers, which can be passed between master and slave. Both master and
slave will check the data length of the DP_READ-/ DP_WRITE requests which follow the DP_INITIATE.

PROFIBUS Application Program Interface

Page: 8 PROFIBUS

3.2 DP_ABORT

With the DP_ABORT service, an open connection to a slave may be released. The connection may be
released by the master or by the slave. The DP_ABORT service is also called by the master’s protocol
software, whenever communication errors are detected.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref 0.. DP_MAX_CHANNELS_MSAC2-1
USIGN8 layer DP / DP_USR
USIGN8 service DP_ABORT
USIGN8 primitive REQ / IND
INT8 invoke_id not used / 0
INT16 result not used

Data block for Request:

Data structure T_DP_ABORT_REQ

USIGN8 subnet net location (NO, SUBNET_LOCAL,
SUBNET_REMOTE)
USIGN8 reason reason (0..0x3F)

Data block for Indication:

Data structure T_DP_ABORT_IND

USIGN8 locally_generated PB_FALSE, PB_TRUE
USIGN8 subnet net location (NO, SUBNET_LOCAL,
SUBNET_REMOTE)
USIGN8 reason instance / reason (0..0xFF)
USIGN8 dummy alignment byte
USIGN16 additional_detail additional detail (see below)

Using a gateway in the network, the parameter SUBNET indicates the location of the abort in the network.

Subnet:

NO 0 location between Master and Gateway or Slave
SUBNET_LOCAL 1 location between the Gateway and Slave
SUBNET_REMOTE 2 location between Slave and Gateway

DP/V1 Services

User Manual Page: 9

The parameter REASON contains the abort protocol instance and the abort reason.

• The upper two bits represent the protocol instance:

 DP_ABORT_INSTANCE_FDL 0x00 protocol instance FDL
 DP_ABORT_INSTANCE_DDLM 0x40 protocol instance DP
 DP_ABORT_INSTANCE_USER 0x80 protocol instance USER

• The lower six bits represent the reason:

Remote abort reasons occured in the protocol instance DP_ABORT_INSTANCE_FDL:

DP_ABORT_FDL_UE (DP_ABORT_INSTANCE_FDL | 0x01)
DP_ABORT_FDL_RR (DP_ABORT_INSTANCE_FDL | 0x02)
DP_ABORT_FDL_RS (DP_ABORT_INSTANCE_FDL | 0x03)
DP_ABORT_FDL_NR (DP_ABORT_INSTANCE_FDL | 0x09)
DP_ABORT_FDL_DH (DP_ABORT_INSTANCE_FDL | 0x0A)
DP_ABORT_FDL_RDL (DP_ABORT_INSTANCE_FDL | 0x0C)
DP_ABORT_FDL_RDH (DP_ABORT_INSTANCE_FDL | 0x0D)

Additional local abort reasons occured in the protocol instance DP_ABORT_INSTANCE_FDL:

DP_ABORT_FDL_LS (DP_ABORT_INSTANCE_FDL | 0x10)
DP_ABORT_FDL_NA (DP_ABORT_INSTANCE_FDL | 0x11)
DP_ABORT_FDL_DS (DP_ABORT_INSTANCE_FDL | 0x12)
DP_ABORT_FDL_NO (DP_ABORT_INSTANCE_FDL | 0x13)
DP_ABORT_FDL_LR (DP_ABORT_INSTANCE_FDL | 0x14)
DP_ABORT_FDL_IV (DP_ABORT_INSTANCE_FDL | 0x15)

Abort reasons occured in the protocol instance DP_ABORT_INSTANCE_DDLM:

DP_ABORT_DDLM_ABT_SE (DP_ABORT_INSTANCE_DDLM | 0x01)
DP_ABORT_DDLM_ABT_FE (DP_ABORT_INSTANCE_DDLM | 0x02)
DP_ABORT_DDLM_ABT_TO (DP_ABORT_INSTANCE_DDLM | 0x03)
DP_ABORT_DDLM_ABT_RE (DP_ABORT_INSTANCE_DDLM | 0x04)
DP_ABORT_DDLM_ABT_IV (DP_ABORT_INSTANCE_DDLM | 0x05)
DP_ABORT_DDLM_ABT_STO (DP_ABORT_INSTANCE_DDLM | 0x06)
DP_ABORT_DDLM_ABT_IA (DP_ABORT_INSTANCE_DDLM | 0x07)
DP_ABORT_DDLM_ABT_OC (DP_ABORT_INSTANCE_DDLM | 0x08)

Abort reasons occured in the instance DP_ABORT_INSTANCE_USER:

The PROFIBUS Draft Specification V1.13 (March 7,1997) specifies no user abort reasons.

Additional Detail:

An additional detail exists for the abort reason DP_ABORT_DDLM_ABT_STO. In this case this parameter
contains the minimal send_timeout (1..65535) interval supported by the slave.

Hint: On the bus, instance and reason are encoded slightly different. The lower four bits represent the
 reason, the next two bits represent the instance and the two most significant bits are reserved. Keep
 that in mind when watching the bus traffic with a monitoring device.

PROFIBUS Application Program Interface

Page: 10 PROFIBUS

4 DP/V1 READ AND WRITE SERVICES

4.1 DP_READ

The DP_READ service reads data from an object identified by slot_number and index of a DP Slave. Usually
the slot_number refers to a physical device in a modular slave and the index identifies an object within this
module.

The confirmation of this service contains the read data.

Service-Description-Block for Request:

USIGN16 comm_ref 0.. DP_MAX_CHANNELS_MSAC2-1
USIGN8 layer DP
USIGN8 service DP_READ
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data block for Request:

Data structure T_DP_READ_REQ

USIGN8 rem_add remote address (not evaluated on MSAC_C2 connections)
USIGN8 slot_number slot number (0..254)
USIGN8 index index (0..254)
USIGN8 length data length (0..240) , restricted by the results of the initiate-
 confirmation

DP/V1 Services

User Manual Page: 11

Service-Description-Block for Confirmation:

USIGN16 comm_ref 0.. DP_MAX_CHANNELS_MSAC2-1
USIGN8 layer DP_USR
USIGN8 service DP_DP_READ
USIGN8 primitive CON
INT8 invoke_id unchanged
INT16 result POS / NEG

Data block for Confirmation:

result = POS:

Data structure T_DP_READ_CON

USIGN16 status status (E_DP_OK)
USIGN8 rem_add remote address (0..126)
USIGN8 slot_number slot number (0..254)
USIGN8 index index (0..254)
USIGN8 length data length (requested data length)
USIGN8 data[length] read data

result = NEG

Data structure T_DP_ERROR_CON standard DP error structure
 (see chapter 5 about Error Stucture and Error Codes)

NOTES:

• The requested number of bytes should at least be equal to the number of bytes the slave’s object
will deliver. Otherwise, the slave might refuse to transfer any data (negative confirmation with status
E_DP_UE).

• While the master is waiting for the response, no further requests can be issued and will be rejected
with interface error E_IF_NO_PARALLEL_SERVICES, except the DP_ABORT service.

• If the connection is closed, the service will be rejected with interface error
E_IF_SERVICE_NOT_EXECUTABLE.

• The rem_add, slot_number and index in the confirmation are redundant informations (mirroring the
request's data) and need not be evaluated.

PROFIBUS Application Program Interface

Page: 12 PROFIBUS

4.2 DP_WRITE

The DP_WRITE service writes data to an object identified by slot_number and index of a DP Slave. Usually
the slot_number refers to a physical device in a modular slave and the index identifies an object within this
module.

The confirmation of this service contains the actually written number of bytes.

Service-Description-Block for Request:

USIGN16 comm_ref 0.. DP_MAX_CHANNELS_MSAC2-1
USIGN8 layer DP
USIGN8 service DP_WRITE
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data block for Request:

Data structure T_DP_WRITE_REQ

USIGN8 rem_add remote address (not evaluated on MSAC_C2 connections)
USIGN8 slot_number slot number (0..254)
USIGN8 index index (0..254)
USIGN8 length data length (0..240)
OCTET data[length] data to write

Service-Description-Block for Confirmation:

USIGN16 comm_ref 0.. DP_MAX_CHANNELS_MSAC2-1
USIGN8 layer DP_USR
USIGN8 service DP_WRITE
USIGN8 primitive CON
INT8 invoke_id unchanged
INT16 result POS / NEG

Data block for Confirmation:

result = POS:

Data structure T_DP_WRITE_CON

USIGN16 status status (E_DP_OK)
USIGN8 rem_add remote address (0..126)
USIGN8 slot_number slot number (0..254)
USIGN8 index index (0..254)
USIGN8 length written data length

result = NEG

Data structure T_DP_ERROR_CON standard DP error structure
 (see chapter 5 about Error Stucture and Error Codes)

DP/V1 Services

User Manual Page: 13

NOTES:

• The requested number of bytes should equal the number of bytes the slave’s object will need.
Otherwise, the slave might refuse to receive the data (negative confirmation with error code
E_DP_UE).

• While the master is waiting for the response, no further requests can be issued and will be rejected
with interface error E_IF_NO_PARALLEL_SERVICES, except the DP_ABORT service.

• If the connection is closed, the service will be rejected with interface error
E_IF_SERVICE_NOT_EXECUTABLE.

• The rem_add, slot_number and index in the confirmation are redundant informations (mirroring the
request's data) and need not be evaluated.The number of bytes actually received is an important
information for the user. If the length is zero, then the user should check the object’s data length.

PROFIBUS Application Program Interface

Page: 14 PROFIBUS

5 NEGATIVE CONFIRMATIONS, ERROR- AND RETURN CODES

5.1 NEGATIVE CONFIRMATIONS

For all negative service confirmations (error confirmations) the following standard DP error structure is used:

Data structure: T_DP_ERROR_CON

USIGN16 status status
USIGN8 rem_add remote address (0..126)l
USIGN8 error_decode error class
USIGN8 error_code_1 error code 1
USIGN8 error_code_2 error code 2

In addition to DP services, also each DP/V1 service confirmation returns an USIGN16 status value which is
defined as follows:

• USIGN8 (low byte): Contains the error code. This byte indicates general errors like "Invalid Para-
meter", etc.

• USIGN8 (high byte): This byte is used only if an error extension is available. By means of this byte
additional error or status information are reported to the user.

Example: STATUS = 0x2315 E_DP_ILLIGAL_INDEX and E_DP_IV

Error Codes

E_DP_OK 0x00 OK, acknowledgement positive
E_DP_UE 0x01 remote user error, see Detail Error Codes
E_DP_IV 0x15 invalid parameter in request, see Error Code
Extensions
E_DP_SE 0xC9 (see DP manual) sequence error, i.e. the service is used in a wrong
context

Error Code Extension

E_DP_ILLEGAL_INDEX 0x23 illegal index in DP_READ or DP_WRITE request
E_DP_ILLEGAL_SLOT 0x24 illegal slot number in DP_READ or DP_WRITE request
E_DP_ILLEGAL_LENGTH 0x25 illegal data length in DP_READ or DP_WRITE request
E_DP_WRONG_SLAVE_ADD 0x03 (see DP manual) invalid slave address in DP_INITIATE request
E_DP_ILLEGAL_EXTENSION 0x26 invalid network address in DP_INITIATE request

DP/V1 Services

User Manual Page: 15

Detail Error Codes

The parameters error_decode, error_code_1 and error_code_2 provide detailed information about the
occurred error.

The parameter error_decode defines the meaning of the parameters error_code_1 and error_code_2.

Error_Decode:

DP_ERROR_DECODE_DPV1 0x80 DP/V1 protocol error
DP_ERROR_DECODE_FMS 0xFE PROFIBUS FMS protocol error
DP_ERROR_DECODE_HART 0xFF HART protocol error

For DP/V1 the parameter error_code_1 defines the classification of the error. The parameter error_code_2 is
slave user specific.

Error_Code_1:

DP_ERROR_APP_READ 0xA0 read error
DP_ERROR_APP_WRITE 0xA1 write error
DP_ERROR_APP_MODUL_FAILURE 0xA2 module failure
 0xA3..0xA7 reserved
DP_ERROR_APP_VERSION_CONFLICT 0xA8 version conflict
DP_ERROR_APP_FEATURE 0xA9 feature not supported
 0xAA..0xAF slave user specific

DP_ERROR_ACCESS_INVALID_INDEX 0xB0 invalid index
DP_ERROR_ACCESS_INVALID_LENGTH 0xB1 length error
DP_ERROR_ACCESS_INVALID_SLOT 0xB2 invalid slot
DP_ERROR_ACCESS_TYPE_CONFLICT 0xB3 type conflict
DP_ERROR_ACCESS_INVALID_AREA 0xB4 invalid area
DP_ERROR_ACCESS_STATE_CONFLICT 0xB5 state conflict
DP_ERROR_ACCESS_DENIED_ACCESS 0xB6 access denied
DP_ERROR_ACCESS_INVALID_RANGE 0xB7 invalid range
DP_ERROR_ACCESS_INVALID_PARAM 0xB8 invalid parameter
DP_ERROR_ACCESS_INVALID_TYPE 0xB9 invalid type
 0xBA..0xBF slave user specific

DP_ERROR_RES_READ_CONFLICT 0xC0 read constraint conflict
DP_ERROR_RES_WRITE_CONFLICT 0xC1 write constarint conflict
DP_ERROR_RES_BUSY 0xC2 resource busy
DP_ERROR_RES_UNAVAILABLE 0xC3 resource unavailable
 0xC4..0xC7 reserved
 0xC8..0xCF slave user specific

PROFIBUS Application Program Interface

Page: 16 PROFIBUS

5.2 RETURN CODES

The following return codes may occur specifically for DP/V1 when a service request will be rejected. The
values for these codes can be found in the User Interface manual chapter Interface Errors.

Return Code / Services DP_INITIATE DP_READ DP_WRITE DP_ABORT
E_IF_SERVICE_NOT_EXECUTABLE x x x x
E_IF_INVALID_COMM_REF x x x x
E_IF_INVALID_ PRIMITIVE x x x x
E_IF_INVALID_PARAMETER - - - x
E_IF_NO_PARALLEL_SERVICES x x x -
E_IF_SERVICE_CONSTR_CONFLICT x - - -

Explanation of the return codes:

E_IF_SERVICE_NOT_EXECUTABLE either
 - the master is still offline,
 - FMS is running parallel to DP/V1,
 - DP_READ or DP_WRITE services are executed on a closed connection.
E_IF_INVALID_COMM_REF comm_ref is ≥ DP_MAX_CHANNELS_MSAC2
E_IF_INVALID_ PRIMITIVE something other than a request is issued to DP/V1
E_IF_INVALID_PARAMETER an open connection is aborted with subnet out of range
E_IF_NO_PARALLEL_SERVICES some service is already active on this comm_ref
E_IF_SERVICE_CONSTR_CONFLICT temporarily, no connection can be opened

PROFIBUS Application Program Interface

FDL Services

Version 5.2
Rev. 00

Date: 17-October-1997

Softing AG
Richard-Reitzner-Allee 6
D-85540 Haar
Phone (++49) 89 45 65 6 - 0
Fax (++49) 89 45 65 6 - 399

 Copyright by Softing AG, 1989-2003
All rights reserved.

PROFIBUS User Manual

PROFIBUS Application Program Interface

Copyright Notice

All rights are reserved. No part of these instructions may be reproduced (printed material,
photocopies, microfilm or other method) or processed, copied or distributed using electronic
systems in any form whatsoever without prior written permission of Softing AG.

The producer reserves the right to make changes to the scope of supply as well as changes to
technical data, even without prior notice.

A great deal of attention was made to the quality and functional integrity in designing,
manufacturing and testing the system. However, no liability can be assumed for potential errors
that might exist or for their effects. Should you find errors please inform your distributor of the
nature of the errors and the circumstances under which they occur. We will be responsive to all
reasonable ideas and will follow up on them, taking measures to improve the product if
necessary.

We call your attention to the fact that the company name and trademark as well as product
names are, as a rule, protected by trademark, patent and product brand laws.

Copyright 1989-2003 by Softing AG, Haar

FDL Services

User Manual Page: i

CONTENTS

1 SCOPE ...1

2 OVERVIEW ..2

3 FDLIF MANAGEMENT SERVICES ...4

3.1 FDLIF-Set-Busparameter..4
3.2 FDLIF-Read-Busparameter ..6
3.3 FDLIF-Activate-SAP..8
3.4 FDLIF-Activate-RSAP ...12
3.5 FDLIF-Change-SAP-Access ...14
3.6 FDLIF-Deactivate-SAP..15
3.7 FDLIF-Event ..16
3.8 FDLIF-Exit ...17

4 FDLIF DATA TRANSFER SERVICES ...18

4.1 FDLIF-SDA (Send Data with Acknowledge) ...18
4.2 FDLIF-SDN (Send Data With No Acknowledge) ..20
4.3 FDLIF-SRD (Send and Request Data with reply) ...22
4.4 FDLIF-Reply-Update ...25
4.5 FDLIF-Reply-Update-Multiple ...27

APPENDIX A ..29

PROFIBUS Application Program Interface

Page: ii PROFIBUS

FDL Services

User Manual Page: 1

1 SCOPE

For some applications it may be useful to have direct access to the FDL functionality. The Fieldbus Data Link
Layer Interface (FDLIF) provides an interface for using FDL services excluding other protocol components.
This manual describes the services that are provided by the FDLIF.

The following figure shows how the FDLIF is embedded in Softing's PROFIBUS protocol software.

PROFIBUS API

FMB

LLI

remote
FM7local

FM7

FDLIF

FDL

FMS

FAL

FM2

DP /
DP/V1

Softing's PROFIBUS API provides uniform access to all service groups of the PROFIBUS protocol. The
common access functions are described in the "User Interface" part of the PROFIBUS User Manual.

This document should be read in conjunction with the following parts of the PROFIBUS User Manual:

• "User Interface" (describes the uniform access functions to all PROFIBUS services)

• "FMB Services" (describes the management services which are necessary to configure the
PROFIBUS protocol stack)

 PROFIBUS Application Program Interface

Page: 2 PROFIBUS

2 OVERVIEW

The FDLIF has to be activated and configured by means of the FMB-Set-Configuration service. Prior to
activation and configuration no FDLIF service is usable.

FDLIF provides management services and data transfer services.

The main goal of management services is to configure FDL and to activate FDL Service Access Points (FDL
SAPs). Management services cannot be executed in parallel. This means, issuing a management service
request is only allowed if there is no outstanding management service confirmation. Multiple requests are
rejected by FDLIF.

All data transfer services have to be processed via FDL SAPs. Before FDL SAPs may be used for data
transfer, they have to be activated. Data transfer services can be executed in parallel. This means, the user
is allowed to issue multiple data transfer requests without waiting for confirmations. The maximum number of
outstanding confirmations is determined by "credits" that have been specified in the FMB-Set-Configuration
request.

FDLIF services in Service Group Order

Management Services

service group Identifier Code Page

Set and read the FDL Bus Parameters FDLIF_SET_BUSPARAMETER 5 4
 FDLIF_READ_BUSPARAMETER 6 6

Manage FDL SAP´s FDLIF_SAP_ACTIVATE 7 8
 FDLIF_RSAP_ACTIVATE 8 12
 FDLIF_SAP_CHANGE_ACCESS 9 14
 FDLIF_SAP_DEACTIVATE 10 15

FM2 Event messages FDLIF_EVENT 19 16

Halt and restart FDLIF FDLIF_EXIT 21 17

Data Transfer Services

service group Identifier Code Page

Data transfer FDLIF_SDA 0 18
 FDLIF_SDN 1 20
 FDLIF_SRD 2 22
 FDLIF_REPLY_UPDATE 3 25
 FDLIF_REPLY_UPDATE_MULTIPLE 4 27

FDL Services

User Manual Page: 3

Notes on Data Structures and Parameters

The FDLIF-specific types and constants are defined in the include file PB_FDL.H.

All words, long words, strings, arrays and records begin on even addresses. To accomplish this, fill bytes
had to be added in some places. They are always recognizable by the name dummy.

Data blocks do not contain pointers. If a data block contains a field or list of variable length, then the length
information of all variable-length fields is stored in the constant part. The field of variable length follows on
the constant part.

constant parameters

field length

variable field

In the include file PB_FDL.H variable data fields are shown between comment delimiters to show their
position and structure, without forcing the programmer to use data structures of a specific length.
Nevertheless, the data must be entered at exactly this spot.

The request and indication data blocks are identical.

The service description block contains a result parameter. If a function returns as positive (result = POS) the
service-specific confirmation block will be passed. If the result is negative (result = NEG) the standard error
structure T_FDLIF_ERROR or a service-specific data structure is passed.

The standard error structure is not noted explicitly for each service. Error structure and error codes are
described in appendix A.

 PROFIBUS Application Program Interface

Page: 4 PROFIBUS

3 FDLIF MANAGEMENT SERVICES

3.1 FDLIF-Set-Busparameter

This service is used to set all FDL operational parameters that are necessary to start FDL. This set of
operational parameters is called FDL Bus Parameters.

The FDLIF-Set-Busparameter service has to be executed immediately after the execution of the FMB-Set-
Configuration service.

Notes:

In future releases of SOFTING's PROFIBUS API, the service FDLIF-Set-Busparameter will be replaced by
service FMB-Set-Busparameter. This service is provided only for compability with former releases of
PROFIBUS API. Do not use this service in new applications.

This service is applicable only if FDLIF runs in stand alone mode. If a mixed operation mode has been
chosen ((FDLIF and DP, DP/V1) or (FDLIF and FMS)), the FDL Bus Parameters have to be set by the FMB-
Set-Busparameter service.

Service-Description-Block for Request:

USIGN16 comm_ref not used
USIGN8 layer FDLIF
USIGN8 service FDLIF_SET_BUSPARAMETER
USIGN8 primitive REQ
INT8 invoke_id reserved for user
INT16 result POS

Data Block for Request:

Data structure T_FDLIF_SET_BUSPARAMETER

USIGN8 loc_add local station address
USIGN8 loc_segm local segment
USIGN8 baud_rate baud rate
USIGN8 medium_red medium redundancy
USIGN16 tsl slot time
USIGN16 min_tsdr min. station delay time resp.
USIGN16 max_tsdr max. station delay time resp.
USIGN8 tqui quiet time
USIGN8 tset setup time
USIGN32 ttr target token rotation time
USIGN8 g gap update factor
PB_BOOL in_ring_desired active or passive station
USIGN8 hsa highest station address
USIGN8 max_retry_limit max. retry limit
USIGN16 reserved for internal use
USIGN8 ident[202] the identification string is filled by the protocol stack

A detailed description of the FDL Bus Parameters is given in the FMB manual.

FDL Services

User Manual Page: 5

Return values for request:

E_OK 0 request was accepted
E_IF_SERVICE_CONSTR_CONFLICT 23 system memory is not configurated or another
 management service is in progress

Service-Description-Block for Confirmation:

USIGN16 comm_ref not used
USIGN8 layer FDLIF_USR
USIGN8 service FDLIF_SET_BUSPARAMETER
USIGN8 primitive CON
INT8 invoke_id same value as set with the request
INT16 result POS or NEG

Data block for Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_FDLIF_ERROR error structure

Values of result:

FDL_IV invalid parameter in request

Values of add_detail:

FALSE_TS 0x0001
FALSE_BAUD_RATE 0x0002
FALSE_MEDIUM_RED 0x0004
FALSE_IDENT 0x0008
FALSE_TSL 0x0010
FALSE_MIN_TSDR 0x0020
FALSE_MAX_TSDR 0x0040
FALSE_TQUI 0x0080
FALSE_TSET 0x0100
FALSE_TTR 0x0200
FALSE_G 0x0400
FALSE_IN_RING_DESIRED 0x0800
FALSE_HSA 0x1000
FALSE_RETRY_CTR 0x2000
FALSE_STATION_TYPE 0x4000

 PROFIBUS Application Program Interface

Page: 6 PROFIBUS

3.2 FDLIF-Read-Busparameter

This service is used to read the FDL Bus Parameters.

Note:

In future releases of SOFTING's PROFIBUS API, the sevice FDLIF-Read-Busparameter will be replaced by
service FMB-Read-Busparameter. This service is provided only for compability with former releases of
PROFIBUS API. Do not use this service in new applications.

Service-Description-Block for Request:

USIGN16 comm_ref not used
USIGN8 layer FDLIF
USIGN8 service FDLIF_READ_BUSPARAMETER
USIGN8 primitive REQ
INT8 invoke_id reserved for user
INT16 result POS

Return values for request:

E_OK 0 request was accepted
E_IF_SERVICE_CONSTR_CONFLICT 23 system memory is not configurated or another
 management service is in progress.

Service-Description-Block for Confirmation:
USIGN16 comm_ref not used
USIGN8 layer FDLIF_USR
USIGN8 service FDLIF_READ_BUSPARAMETER
USIGN8 primitive CON
INT8 invoke_id same value as set with the request
INT16 result POS or NEG

Data block for Confirmation:

result = POS:

Data structure T_FDLIF_READ_BUSPARAMETER

USIGN8 loc_add local station address
USIGN8 loc_segm local segment
USIGN8 baud_rate baud rate
USIGN8 medium_red medium redundancy
USIGN16 tsl slot time
USIGN16 min_tsdr min. station delay time resp.
USIGN16 max_tsdr max. station delay time resp.
USIGN8 tqui quiet time
USIGN8 tset setup time
USIGN32 ttr target token rotation time
USIGN8 g gap update factor
PB_BOOL in_ring_desired active or passive station
USIGN8 hsa highest station address
USIGN8 max_retry_limit max. retry limit
USIGN16 reserved for internal use
USIGN8 ident[202] ident

FDL Services

User Manual Page: 7

A detailed description of the FDL Bus Parameters is given in the FMB manual.

result = NEG:

Data structure T_FDLIF_ERROR error structure

 PROFIBUS Application Program Interface

Page: 8 PROFIBUS

3.3 FDLIF-Activate-SAP

All data transfer services have to be processed via FDL Service Access Points (FDL SAPs). There are two
SAP types reflecting the different characteristics of Master Stations and Slave Stations. Usually, "regular"
SAPs are activated on Master Stations whereas Responder SAPs (RSAPs) are activated on Slave Stations.
However, it is allowed to use RSAPs on Master Stations and "regular" SAPs on Slave Stations.

The service FDLIF-Activate-SAP is used to activate and configure "regular" SAPs.

Service-Description-Block for Request:

USIGN16 comm_ref not used
USIGN8 layer FDLIF
USIGN8 service FDLIF_SAP_ACTIVATE
USIGN8 primitive REQ
INT8 invoke_id reserved for user
INT16 result POS

Data Block for Request:

Data structure T_FDLIF_SAP_ACTIVATE_REQ

USIGN8 sap_nr SAP to be activated (0..63,FDL_DEFAULT_SAP)
USIGN8 max_l_sdu_length_req maximum length of request telegram
USIGN8 max_l_sdu_length_con_ind maximum length of con/ind telegram
USIGN8 access_sap permitted request SAPs
USIGN8 access_station permitted requestor
USIGN8 sda role in SDA service
USIGN8 sdn role in SDN service
USIGN8 srd role in SRD service
USIGN8 csrd not supported, SERVICE_NOT_ACTIVATED
USIGN8 data_mode not used
USIGN8 credits number of indication resources
USIGN8 dummy alignment byte

Return values for request:

E_OK 0 request was accepted
E_IF_SERVICE_CONSTR_CONFLICT 23 system memory is not configurated or another
 management service is in progress.
E_IF_RESOURCE_UNAVAILABLE 21 no resource available for service processing,
 i.e all receive_credits are used

FDL Services

User Manual Page: 9

Notes on data structure T_FDLIF_SAP_ACTIVATE_REQ

The component sap_nr specifies the number of the SAP that should be activated. Valid values are 0..63 and
FDL_DEFAULT_SAP.

The component max_l_sdu_length_req specifies the maximum length of user data that can be sent by this
SAP. The upper bound of max_l_sdu_length_req depends on the local SAP number and the remote SAP
number in the data transfer request.

local SAP remote SAP range of max_l_sdu_length_req
not FDL_DEFAULT_SAP not FDL_DEFAULT_SAP 0..244
not FDL_DEFAULT_SAP FDL_DEFAULT_SAP 0..245

FDL_DEFAULT_SAP not FDL_DEFAULT_SAP 0..245
FDL_DEFAULT_SAP FDL_DEFAULT_SAP 0..246

The component max_l_sdu_length_con_ind specifies the maximum length of user data that can be received
by this SAP. The upper bound of max_l_sdu_length_con_ind depends on the local SAP number and the
remote SAP number in data confirmations and indications.

local SAP remote SAP range of max_l_sdu_length_con_ind
not FDL_DEFAULT_SAP not FDL_DEFAULT_SAP 0..244
not FDL_DEFAULT_SAP FDL_DEFAULT_SAP 0..245

FDL_DEFAULT_SAP not FDL_DEFAULT_SAP 0..245
FDL_DEFAULT_SAP FDL_DEFAULT_SAP 0..246

The component access_sap with the values 0..62,FDL_DEFAULT_SAP and ALL is used for access
protection. It specifies whether request PDUs are accepted only from a single remote SAP (0..62,
FDL_DEFAULT_SAP) or from all remote SAPs (ALL).

Just as access_sap the component access_station with the values 0..126 and ALL is used for access
protection. It specifies whether request PDUs are accepted only from a single remote station (0..126) or from
all remote stations (ALL).

The components sda, sdn, srd and csrd specifies the services that are activated for this SAP. For each
service there are different roles. The following roles are possible:

- INITIATOR: The station initiates the service exlusively
- RESPONDER: The station responds to the service exlusively
- BOTH_ROLES: The station initiates and responds to the service.
- SERVICE_NOT_ACTIVATED: The service is not active for this SAP.

 PROFIBUS Application Program Interface

Page: 10 PROFIBUS

If the SAP is activated on a Master Station the following combinations of service and role are possible:

 INITIATOR RESPONDER BOTH_ROLES SERVICE_NOT_ACTIVATED
SDA x x(1) x(1) x
SDN x x(1) x(1) x
SRD x x(1) x(1) x
CSRD x

(1) The ASPC2 does not accept to activate a SAP as RESPONDER for two of the services SDA, SDN
 or SRD. So either all three services are activated as RESPONDER or a single service is activated
 as RESPONDER.

If the SAP is activated on a Slave Station only one combination of service and role is possible:

 INITIATOR RESPONDER BOTH_ROLES SERVICE_NOT_ACTIVATED
SDA x
SDN x
SRD x
CSRD x

The component data_mode is used for RSAPs only.

A SAP needs data buffers (receive resources) to receive PDUs from remote stations. The component credits
specifies the number of receive resources that are assigned to the SAP.

There is a time gap between the receipt of a PDU in the FDL and the indication on the user interface. Thus,
indications are stored in the protocol stack temporarily. The component credits specifies the number
ofindications that may be stored in the protocol stack, i.e. credits specifies how many indications may be
processed by the protocol stack in parallel. Note that the sum of credits for all SAPs must not exceed the
number of receive credits that have been specified in the FMB-Set-Configuration request.

FDL Services

User Manual Page: 11

Service-Description-Block for Confirmation:

USIGN16 comm_ref not used
USIGN8 layer FDLIF_USR
USIGN8 service FDLIF_SAP_ACTIVATE
USIGN8 primitive CON
INT8 invoke_id same value as set with the request
INT16 result POS or NEG

Data block for Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_FDLIF_ERROR error structure

Values of result:

FDL_IV invalid parameter in request
FDL_NO SAP already active

 PROFIBUS Application Program Interface

Page: 12 PROFIBUS

3.4 FDLIF-Activate-RSAP

This service is used to activate and configure a FDL Responder SAP (FDL RSAP). (See also service FDLIF-
Activate-SAP.)

Note that the number of active RSAPs must not exceed the maximum number of Responder SAPs that have
been specified in the FMB-Set-Configuration request.

Service-Description-Block for Request:

USIGN16 comm_ref not used
USIGN8 layer FDLIF
USIGN8 service FDLIF_RSAP_ACTIVATE
USIGN8 primitive REQ
INT8 invoke_id reserved for user
INT16 result POS

Data Block for Request:

Data structure T_FDLIF_RSAP_ACTIVATE_REQ

USIGN8 sap_nr SAP to be activated (0..63,FDL_DEFAULT_SAP)
USIGN8 max_l_sdu_length_req maximum length of request telegram
USIGN8 max_l_sdu_length_ind maximum length of ind telegram
USIGN8 access_sap permitted request SAPs
USIGN8 access_station permitted requestor
USIGN8 data_mode NORMAL_MODE, DATA_MODE
USIGN8 credits number of indication resources
USIGN8 dummy alignment byte

Return values for request:

E_OK 0 request was accepted
E_IF_SERVICE_CONSTR_CONFLICT 23 system memory is not configurated or another
 management service is in progress.
E_IF_RESOURCE_UNAVAILABLE 21 no resource available for service processing,
 i.e either all receive credits are used or all
 Responder SAPs are activated.

FDL Services

User Manual Page: 13

Notes on data structure T_FDLIF_RSAP_ACTIVATE_REQ

Most of the components are analogous to the data structure T_FDLIF_SAP_ACTIVATE_REQ. Differences
and add-ons are as follows:

The roles for the services SDA, SDN, SRD and CSRD are implicitly set. The roles are set as follows:

 RESPONDER SERVICE_NOT_ACTIVATED
SDA x
SDN x
SRD x
CSRD x

The component data_mode specifies whether a SRD indication shall be generated for all received SRD
request PDUs (NORMAL_MODE), or the SRD indication shall be omitted if both the received request PDU
and the sent response PDU contain no user data (DATA_MODE).

Service-Description-Block for Confirmation:

USIGN16 comm_ref not used
USIGN8 layer FDLIF_USR
USIGN8 service FDLIF_RSAP_ACTIVATE
USIGN8 primitive CON
INT8 invoke_id same value as set with the request
INT16 result POS or NEG

Data block for Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_FDLIF_ERROR error structure

Values of result:

FDL_IV invalid parameter in request
FDL_NO SAP already activated

 PROFIBUS Application Program Interface

Page: 14 PROFIBUS

3.5 FDLIF-Change-SAP-Access

When a SAP is activated the components access_sap and access_station of
T_FDLIF_SAP_ACTIVATE_REQ and T_FDLIF_RSAP_ACTIVATE_REQ specifies the access rights of
remote stations. The service may be used to change the access rights of an activated (R)SAP.

Service-Description-Block for Request:

USIGN16 comm_ref not used
USIGN8 layer FDLIF
USIGN8 service FDLIF_SAP_CHANGE_ACCESS
USIGN8 primitive REQ
INT8 invoke_id reserved for user
INT16 result POS

Data Block for Request:

Data structure T_FDLIF_SAP_CHANGE_REQ

USIGN8 sap_nr SAP to be activated (0..63, FDL_DEFAULT_SAP)
USIGN8 access_sap 0..62, FDL_DEFAULT_SAP or ALL
USIGN8 access_station 0..126 or ALL
USIGN8 dummy alignment byte

Return values for request:

E_OK 0 request was accepted
E_IF_SERVICE_CONSTR_CONFLICT 23 system memory is not configurated or another
 management service is in progress.

Service-Description-Block for Confirmation:

USIGN16 comm_ref not used
USIGN8 layer FDLIF_USR
USIGN8 service FDLIF_SAP_CHANGE_ACCESS
USIGN8 primitive CON
INT8 invoke_id same value as set with the request
INT16 result POS or NEG

Data block for Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_FDLIF_ERROR error structure

Values of result:

FDL_IV invalid parameter in request
FDL_NO SAP is not active

FDL Services

User Manual Page: 15

3.6 FDLIF-Deactivate-SAP

This service is used to deactivate an FDL (R)SAP.

Service-Description-Block for Request:

USIGN16 comm_ref not used
USIGN8 layer FDLIF
USIGN8 service FDLIF_SAP_DEACTIVATE
USIGN8 primitive REQ
INT8 invoke_id reserved for user
INT16 result POS

Data Block for Request:

Data structure T_FDLIF_SAP_DEACTIVATE_REQ

USIGN8 sap_nr SAP to be deactivated (0..63,FDL_DEFAULT_SAP)
USIGN8 dummy alignment byte

Return values for request:

E_OK 0 request was accepted
E_IF_SERVICE_CONSTR_CONFLICT 23 system memory is not configurated or another
 management service is in progress.

Service-Description-Block for Confirmation:

USIGN16 comm_ref not used
USIGN8 layer FDLIF_USR
USIGN8 service FDLIF_SAP_DEACTIVATE
USIGN8 primitive CON
INT8 invoke_id same value as set with the request
INT16 result POS or NEG

Data block for Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_FDLIF_ERROR error structure

Values of result:

FDL_IV invalid parameter in request
FDL_NO SAP is not active

 PROFIBUS Application Program Interface

Page: 16 PROFIBUS

3.7 FDLIF-Event

By means of the FDLIF-Event service, the FDLIF indicates FM2 events to the FDLIF user.

Notes:

In the FMB-Set-Configuration service the user selects the instance that shall receive the FM2 events. If the
FDLIF user is selected as event receiver, the FM2 events are indicated as FDLIF-Events.

In future releases of SOFTING's PROFIBUS API, the service FDLIF-Event will be replaced by service FMB-
Event. This service is provided only for compability with former releases of PROFIBUS API. Do not use this
service in new applications.

Service-Description-Block for die Indication:

USIGN16 comm_ref not used
USIGN8 layer FDLIF_USR
USIGN8 service FDLIF_EVENT
USIGN8 primitive IND
INT8 invoke_id not used
INT16 result POS

Data Block:

Data structure T_FDLIF_EVENT_IND

USIGN8 event event code

FM2 event codes:

FM2_FAULT_ADDRESS 1 duplicate address recognized
FM2_FAULT_PHY 2 physical layer is malfunctioning (1)
FM2_FAULT_TTO 3 timeout on bus detected
FM2_FAULT_SYN 4 no receiver synchronization
FM2_FAULT_OUT_OF_RING 5 local station out of ring
FM2_GAP_EVENT 6 GAP area has changed (1)

(1) Not supported by ASPC2

Additional FM2 event codes (Error messages from ASPC2)

FM2_MAC_ERROR 19 fatal MAC error
FM2_HW_ERROR 20 fatal HW error

FDL Services

User Manual Page: 17

3.8 FDLIF-Exit

The FDLIF-Exit service may be used to reset the FDLIF component. Reset of FDLIF component means loss
of all outstanding confirmations, deactivation of all SAPs activated via FDLIF, and - if FDLIF runs in stand
alone mode - reset of FDL which includes reset of ASPC2.

Service-Description-Block for Request:

USIGN16 comm_ref not used
USIGN8 layer FDLIF
USIGN8 service FDLIF_EXIT
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result POS

Data block for Request:

n/a

Service-Description-Block for Confirmation:

USIGN16 comm_ref not used
USIGN8 layer FDLIF_USR
USIGN8 service FDLIF_EXIT
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS

Data block for Confirmation:

n/a

 PROFIBUS Application Program Interface

Page: 18 PROFIBUS

4 FDLIF DATA TRANSFER SERVICES

4.1 FDLIF-SDA (Send Data with Acknowledge)

This service is used to send data to a single remote station. At the remote station the data - if received error-
free - are passed to the remote FDL user. The local FDLIF user gets a confirmation concerning the receipt or
non-receipt of the data.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref not used
USIGN8 layer FDLIF, FDLIF_USR
USIGN8 service FDLIF_SDA
USIGN8 primitive REQ, IND
INT8 invoke_id reserved for user
INT16 result POS

Data Block for Request and Indication:

Data structure T_FDLIF_SDN_SDA_SRD_REQ

USIGN8 ssap source SAP (0..62)
USIGN8 dsap destination SAP at remote station (0..62)
USIGN8 rem_add address of remote station (0..126)
USIGN8 priority priority (LOW, HIGH)
USIGN8 status only used for SRD indications
USIGN8 length length of request/indication data
USIGN8 req_data[length] request/indication data

Return values for request:

E_OK 0 request was accepted
E_IF_SERVICE_CONSTR_CONFLICT 23 system memory is not configurated
E_IF_RESOURCE_UNAVAILABLE 21 all send credits are in use

Notes on T_FDLIF_SDN_SDA_SRD_REQ

The maximum length of data that may be sent or received has been specified by means of the FDLIF-
Activate-SAP service.

FDL Services

User Manual Page: 19

Service-Description-Block for Confirmation:

USIGN16 comm_ref not used
USIGN8 layer FDLIF_USR
USIGN8 service FDLIF_SDA
USIGN8 primitive CON
INT8 invoke_id same value as set with the request
INT16 result POS or NEG

Data block for Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_FDLIF_ERROR error structure

Values of result:

FDL_UE user error at remote station
FDL_RR resource at remote SAP not available or not sufficient
FDL_RS service at remote SAP not activated or remote SAP not activated
FDL_NA no reaction from remote station
FDL_DS local FDL is not in logical token ring
FDL_LS service at local SAP or local SAP not activated
FDL_IV invalid parameter in request

 PROFIBUS Application Program Interface

Page: 20 PROFIBUS

4.2 FDLIF-SDN (Send Data With No Acknowledge)

This service is used to send data to a single remote station, to a group of remote stations (Multicast) or to all
remote stations (Broadcast). At the remote station(s) the data - if received error free - are passed to the
remote FDL user(s). The local FDLIF user gets a confirmation acknowledging the end of data transfer.
However, there is no confirmation that a successful receipt of data has taken place.

Service-Description-Block for Request and Indication:

USIGN16 comm_ref not used
USIGN8 layer FDLIF, FDLIF_USR
USIGN8 service FDLIF_SDN
USIGN8 primitive REQ, IND
INT8 invoke_id reserved for user
INT16 result POS

Data Block for Request and Indication:

Data structure T_FDLIF_SDN_SDA_SRD_REQ

USIGN8 ssap source SAP (0..62)
USIGN8 dsap destination SAP at remote station (0..62,63)
USIGN8 rem_add address of remote station (0..126,127)
USIGN8 priority priority (LOW, HIGH)
USIGN8 status only used for SRD indications
USIGN8 length length of request/indication data
USIGN8 req_data[length] request/indication data

Return values for request:

E_OK 0 request was accepted
E_IF_SERVICE_CONSTR_CONFLICT 23 system memory is not configurated
E_IF_RESOURCE_UNAVAILABLE 21 all send credits are in use

Notes on T_FDLIF_SDN_SDA_SRD_REQ

The type of a SDN request depends on remote address and remote SAP:

message type remote address remote SAP (dsap)
SDN to a single remote station 0..126 0..62
SDN Broadcast 127 63
SDN Multicast 127 0..62

The maximum length of data that may be sent or received has been specified by means of the FDLIF-
ACTIVATE-SAP service.

FDL Services

User Manual Page: 21

Service-Description-Block for Confirmation:

USIGN16 comm_ref not used
USIGN8 layer FDLIF_USR
USIGN8 service FDLIF_SDN
USIGN8 primitive CON
INT8 invoke_id same value as set with the request
INT16 result POS or NEG

Data block for Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_FDLIF_ERROR error structure

Values of result:

FDL_DS local FDL is not in logical token ring
FDL_LS service at local SAP or local SAP not activated
FDL_IV invalid parameter in request

 PROFIBUS Application Program Interface

Page: 22 PROFIBUS

4.3 FDLIF-SRD (Send and Request Data with reply)

This service is used to transfer data to a single remote station and at the same time to request data that was
made available by the remote user at an earlier time. At the remote station the received data - if received
error-free - is passed to the remote user. The local user gets either the requested data or a confirmation that
remote data were not available or a confirmation of the non-receipt of the transmitted data.

The receiver SAP at the remote station has to be a FDL Responder SAP (RSAP) and the remote user has to
load his data to the RSAP using the services FDLIF-REPLY-UPDATE or FDLIF-REPLY-UPDATE-
MULTIPLE.

The FDLIF-SRD service can be used to request data from the remote user without sending own data. For
this purpose the data length in the SRD request has to be set to zero.

Service-Description-Block for Request and Indication

USIGN16 comm_ref not used
USIGN8 layer FDLIF, FDLIF_USR
USIGN8 service FDLIF_SRD
USIGN8 primitive REQ, IND
INT8 invoke_id reserved for user
INT16 result POS

Data Block for Request and Indication:

Data structure T_FDLIF_SDN_SDA_SRD_REQ

USIGN8 ssap source SAP
USIGN8 dsap destination SAP of remote station
USIGN8 rem_add address of remote station
USIGN8 priority priority (LOW, HIGH)
USIGN8 status SRD indication: FDL_NO_DATA, FDL_LOW_DATA,
 FDL_HIGH_DATA
USIGN8 length length of request/indication data
USIGN8 req_data[length] request/indication data

Return values for request:

E_OK 0 request was accepted
E_IF_SERVICE_CONSTR_CONFLICT 23 system memory is not configurated
E_IF_RESOURCE_UNAVAILABLE 21 all send credits are in use

FDL Services

User Manual Page: 23

Notes on T_FDLIF_SDN_SDA_SRD_REQ

Only RSAPs may be used as SRD responder.

The maximum length of data that may be sent or received has been specified by means of the FDLIF-
Activate-(R)SAP service.

In a SRD indication the status byte indicates whether or not response data were sent to the SRD requester.

Possible values:

- FDL_NO_DATA: No response data were transmitted
- FDL_LOW_DATA: Low prior response data were transmitted
- FDL_HIGH_DATA: High prior response data were transmitted

 PROFIBUS Application Program Interface

Page: 24 PROFIBUS

Service-Description-Block for Confirmation:

USIGN16 comm_ref not used
USIGN8 layer FDLIF_USR
USIGN8 service FDLIF_SRD
USIGN8 primitive CON
INT8 invoke_id same value as set with the request
INT16 result POS or NEG

Data block for Confirmation:

result = POS:

Data structure T_FDLIF_SRD_CNF

USIGN8 status status
USIGN8 length length of confirmation data
USIGN8 cnf_data[length] confirmation data

Values of status:
FDL_DL pos. ack. for sent data, reply data with low priority available
FDL_DH pos. ack. for sent data, reply data with high priority available
FDL_NR pos. ack. for sent data, reply data are not available from remote FDL

result = NEG:

Data structure T_FDLIF_SRD_CNF

USIGN8 status status
USIGN8 length length of confirmation data
USIGN8 cnf_data[length] confirmation data

Values of status:

FDL_UE user error at remote station
FDL_RR resource at remote SAP not available or not sufficient
FDL_RS service at remote SAP not activated or remote SAP not activated
FDL_NA no reaction from remote station
FDL_DS local FDL is not in logical token ring
FDL_LS service at local SAP or local SAP not activated
FDL_IV invalid parameter in request
FDL_RDL neg. ack. for sent data as resources at remote station not available or not
 sufficient, reply data with low priority available
FDL_RDH neg. ack. for sent data as resources at remote station not available or not
 sufficient, reply data with high priority available

FDL Services

User Manual Page: 25

4.4 FDLIF-Reply-Update

This service allows the user to load data in the update buffer of a FDL RSAP. The user gets a REPLY-
UPDATE confirmation acknowledging that the data have been stored in the buffer. The data remain in the
buffer until they are transmitted as response of a SRD request PDU. The buffer contents are transmitted only
one time: if the RSAP receives another SRD request PDU, it acknowledges with no data.

In the SRD indication a status byte informs the user whether or not response data were sent to the SRD
requester.

If the user loads new data before the old data are transmitted the old buffer contents are overwritten!

Service-Description-Block for Request:

USIGN16 comm_ref not used
USIGN8 layer FDLIF
USIGN8 service FDLIF_REPLY_UPDATE
USIGN8 primitive REQ
INT8 invoke_id reserved for user
INT16 result POS

Data Block for Request:

Data structure T_FDLIF_RUP_REQ

USIGN8 sap_nr local RSAP
USIGN8 priority priority (LOW, HIGH)
USIGN8 dummy alignment byte
USIGN8 length length of request data
USIGN8 req_data[length] request data

Return values for request:

E_OK 0 request was accepted
E_IF_SERVICE_CONSTR_CONFLICT 23 system memory is not configurated
E_IF_RESOURCE_UNAVAILABLE 21 all send credits are in use

Notes on T_FDLIF_RUP_REQ

The maximum length of data that may be sent has been specified by means of the FDLIF-Activate-RSAP
service.

 PROFIBUS Application Program Interface

Page: 26 PROFIBUS

Service-Description-Block for Confirmation:

USIGN16 comm_ref not used
USIGN8 layer FDLIF_USR
USIGN8 service FDLIF_REPLY_UPDATE
USIGN8 primitive CON
INT8 invoke_id same value as set with the request
INT16 result POS or NEG

Data block for Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_FDLIF_ERROR error structure

Values of result:

FDL_LS service at local SAP or local SAP not activated
FDL_LR resource at local SAP not available or not sufficient
FDL_IV invalid parameter in request

FDL Services

User Manual Page: 27

4.5 FDLIF-Reply-Update-Multiple

This service allows the user to load data to the update buffer of a FDL RSAP. The user gets a FDLIF-
REPLY-UPDATE-MULTIPLE confirmation acknowledging that the data have been stored in the buffer. The
data are transmitted as response to SRD request PDU. In contrast to the FDLIF-REPLY-UPDATE service,
the data are transmitted multiple times. Every receipt of a SRD request telegram is acknowledged by
sending the buffer contents.

In the SRD indication a status byte informs the user whether or not response data were sent to the SRD
requester.

The data are sent until the user loads new data to the update buffer. The buffer contents may be deleted by
loading an empty data buffer. For this purpuse the data length in the FDLIF-REPLY-UPDATE-MULTIPLE
request shall be set to zero.

Service-Description-Block for Request:

USIGN16 comm_ref not used
USIGN8 layer FDLIF
USIGN8 service FDLIF_REPLY_UPDATE
USIGN8 primitive REQ
INT8 invoke_id reserved for user
INT16 result POS

Data Block for Request:

Data structure T_FDLIF_RUP_REQ

USIGN8 sap_nr local sap SAP
USIGN8 priority priority (LOW, HIGH)
USIGN8 dummy alignment byte
USIGN8 length length of request data
USIGN8 req_data[length] request data

Return values for request:

E_OK 0 request was accepted
E_IF_SERVICE_CONSTR_CONFLICT 23 system memory is not configurated or an-
 management service is in progress.
E_IF_RESOURCE_UNAVAILABLE 21 all send credits are in use

Notes on T_FDLIF_RUP_REQ

The maximum length of data that may be sent has been specified by means of the FDLIF-ACTIVATE-RSAP
service.

 PROFIBUS Application Program Interface

Page: 28 PROFIBUS

Service-Description-Block for Confirmation:

USIGN16 comm_ref not used
USIGN8 layer FDLIF_USR
USIGN8 service FDLIF_REPLY_UPDATE
USIGN8 primitive CON
INT8 invoke_id same value as set with the request
INT16 result POS or NEG

Data block for Confirmation:

result = POS:

n/a

result = NEG:

Data structure T_FDLIF_ERROR error structure

Values of result:

FDL_LS service at local SAP or local SAP not activated
FDL_LR resource at local SAP not available or not sufficient
FDL_IV invalid parameter in request

FDL Services

User Manual Page: 29

APPENDIX A

For negative confirmations the following standard error structure is used:

Data structure: T_FDLIF_ERROR

USIGN8 result error result
USIGN8 dummy alignment byte
INT16 add_detail additional detail

The possible FDL-Interface service error codes are follows.

FDL-Interface Services Error Codes

Constant Value Description

FDL_UE 0x01 user error at remote station
FDL_RR 0x02 resource at remote SAP not available or not sufficient
FDL_RS 0x03 service at remote SAP not activated or remote SAP not

 activated
FDL_RDL 0x0C neg. ack. for sent data as resources at remote station not

 available or not sufficient, reply data with low priority available
FDL_RDH 0x0D neg. ack. for sent data as resources at remote station not
 available or not sufficient, reply data with high priority available
FDL_LS 0x10 service at local SAP or local SAP not activated
FDL_NA 0x11 no reaction from remote station
FDL_DS 0x12 local FDL is not in logical token ring
FDL_NO 0x13 configuration error at local SAP
FDL_LR 0x14 resource at local SAP not available or not sufficient
FDL_IV 0x15 invalid parameter in request

PROFIBUS Application Program Interface

DP Slave Services

Version 5.2
Rev. 00

Date: 08-April-1999

Softing AG
Richard-Reitzner-Allee 6
D-85540 Haar
Phone (++49) 89 - 45 65 6 - 0
Fax (++49) 89 - 45 65 6 - 399

 Copyright by Softing AG, 1998-2003
All rights reserved.

PROFIBUS User Manual

Copyright Notice

All rights reserved. No part of these instructions may be reproduced (printed material, photocopies,
microfilm or other method) or processed, copied or distributed using electronic systems in any form
whatsoever without prior written permission of Softing AG.

The producer reserves the right to make changes to the scope of supply as well as changes to
technical data, even without prior notice. A great deal of attention was made to the quality and
functional integrity in designing, manufacturing and testing the system. However, no liability can be
assumed for potential errors that might exist or for their effects. Should you find errors, please
inform your distributor of the nature of the errors and the circumstances under which they occur.
We will be responsive to all reasonable ideas and will follow up on them, taking measures to
improve the product, if necessary.

We call your attention to the fact that the company name and trademark as well as product names
are, as a rule, protected by trademark, patent and product brand laws.

Copyright 1998-2003 by Softing AG, Haar

 PROFIBUS

PROFIBUS Application Program Interface

User Manual Page: i

CONTENTS

1 SCOPE ..1

2 ABOUT DPS..1

3 DPS SERVICES..4

3.1 Dps_Init_Slave ...4
3.2 Dps_Exit_Slave..12
3.3 Dps_Get_Status...13
3.4 Dps_Slave_Diag...17
3.5 Dps_Chk_Cfg...22
3.6 Dps_Set_Prm...24
3.7 Dps_Set_Slave_Add ..28

DPS Services

Page: ii PROFIBUS

PROFIBUS Application Program Interface

User Manual Page: 1

1 SCOPE

This documentation describes the handling of the PROFIBUS DP slave (DPS). It starts with a short
introduction to the transfer protocol for PROFIBUS DP.

At the beginning we briefly explain the most important terms and functions of PROFIBUS DPS. If you have
already worked in this area, you can skip this chapter.

2 ABOUT DPS

DPS is a freely programmable DP slave that leaves any possible freedom to the applications programmer
while taking many tasks off the user's hands.

Before commissioning a DP system all stations must be assigned unique addresses. A DP slave that has not
yet been assigned its own address receives the default address 126. The default address is stored in the
nonvolatile RAM (NVRAM) of the slave before commissioning. If you add the slave to the bus with this
address, the slave needs to be assigned a unique address by the master via ‘set_slave_add’ first. The now
valid slave address is taken over into the slave's nonvolatile memory. The same applies to any subsequent
address assignment over the bus. The user is informed by an indication, provided the slave has received a
valid new address.

Every DP slave is assigned to one DP master. The assignment is established when parameterizing the
slave. After a valid configuration, only the master that has parameterized and configured the slave can use
the slave for influencing the process.

Before you can address a slave over the bus you need to initialize the slave first. In the initialization process
you define whether the slave should work in a specific mode (Sync, Freeze, ...). In addition, you specify the
minimum reaction time, the ident number of the device, and the maximum length parameters (resource
definition) the slave should support.

The slave also features the so-called "auto-parameters“: ‘auto_cfg_response’, ‘auto_prm_response’ and
‘auto_startup_inputs’ that help you initialize the slave. The functionality of these parameters relieves you of
having to check the individual parameterization and configuration data. When the parameters are set to
PB_TRUE the slave tests the parameterization and configuration data automatically.

When you declare special limits or controller parameters, for example, you use the so-called vendor-specific
data (user_prm_data) in the parameterization data. If the parameterization data of the master contain
vendor-specific data, these data may need to be checked. For this purpose, set the parameter
‘auto_prm_response’ to PB_FALSE. The parameterization data are transferred with an indication. When you
have checked the data you have to either approve or reject them.

You may in some cases also need to check the configuration data. Let's assume, for example, that you
would like the slave to support different configurations. You initialize the slave with a possible configuration.
The master, however, transmits a different configuration. If you then check the configuration data and
determine that this configuration is permitted as well, the slave takes over the new configuration that was
transmitted by the master. To be able to check the configuration data transmitted by the master, you set the
parameter ‘auto_cfg_response’ to PB_FALSE.

DPS Services

Page: 2 PROFIBUS

The following section provides a short description of the slave's operating states to help you understand error
messages that may occur and to become familiar with specific sequences of operation. The individual states
of the slave and the associated status transitions are illustrated in the figure below.

Off-line

IDLE

WAIT_PRM

WAIT_CFG

DATA_EXCHANGE

Leave baud rate

Dps_Chk_Cfg.res E_DPS_NO
Dps_Set_Slave_Add.ind
Leave master

Dps_Set_Slave_Add.ind
Leave master

baud_rate not detected yet,
 no bus traffic,
Dps_Get_Status

Dps_Set_Prm.res
E_DPS_NO,
 Dps_Get_Status,
D Sl Di

Dps_Chk_Cfg.res E_DPS_OK and
input data set*,

auto_cfg_response=PB_TRUE and
configuration by master successful

and input data set*

Dps_Exit_Slave.con[+]

Dps_Exit_Slave.con[+] Dps_Get_Status,
Dps_Slave_Diag

Dps_Set_Prm.res E_DPS_OK,
auto_prm_response=PB_TRUE
and parameterization by master

successful

Dps_Exit_Slave.con[+]

Dps_Exit_Slave.con[+]

Dps_Init_Slave.con[+]

Dps_Init_Slave.con[-]

Dps_Exit_Slave.con[+]

baud_rate detected

Dps_Get_Status,
Dps_Slave_Diag

* The input data are set via
auto_startup_input=PB_TRUE or with
the service Profi_Set_Dps_Input_Data

Fig-2-1: Status diagram of the DP slave

If no primitive is specified in the services shown in the figure, all service primitives are possible. In addition,
the data interface functions:

• profi_set_dps_input_data
• profi_get_dps_output_data
• profi_get_dps_input_data

have not been included in the figure since they can be used in all operating states without influencing the
states.

After initialization, the slave changes into the operating state IDLE. It remains in this state until the ASIC
detects a valid baud rate. The slave then changes into WAIT_PRM state and waits for parameterization data
from the master. You will only be informed with a ‘Dps_Set_Prm indication’ that parameterization data were
received if user_prm_data exist or in the case of auto_prm_response=PB_FALSE. The status transition to
WAIT_CFG is independent of your response to the configuration data. Information on whether this response
is still missing is stored in the parameter ‘prm_wait_response’ of the service ‘Dps_Get_Status’ and in the
indication ‘Dps_Set_Prm’.

PROFIBUS Application Program Interface

User Manual Page: 3

The slave changes from the operating state WAIT_CFG to DATA_EXCHANGE when both the
parameterization and configuration data have been accepted by the slave or user and the first input data of
the slave have been set. The operating state is changed automatically when the parameters
‘auto_cfg_response’ and ‘auto_startup_inputs’ are simultaneously set to PB_TRUE. If a response to the
configuration is still to come from the user, the corresponding parameter ‘cfg_wait_response’ is set to
PB_TRUE. If there are still input data missing, however, ‘startup_input_wait’ is set to PB_TRUE. You set the
input data with the function ‘profi_set_dps_input_data’ of the data interface.

As soon as the slave goes through a relevant change of state, the firmware automatically generates an
indication of the service ‘Dps_Get_Status’. Changes of state are considered relevant when they have an
influence on the transfer of data, i.e. a transition from or into the operating state DATA_EXCHANGE,
Global_Control commands or a transition of the master to CLEAR or OPERATE. Finding the baud rate, etc.
is not indicated automatically. You can, of course, interrogate the slave's state yourself at any time.

Every service confirmation includes a parameter ‘USIGN16 status’. This parameter contains the status
which shows whether the service was executed correctly. If the confirmation has a positive result, this status
is E_DPS_OK. If negative, it describes the reason why the service could not be executed. In addition, the
high byte of the status contains an extended error code which provides additional information on the error
that occurred. If, for example, the low byte shows E_DPS_IV, the service request contains an invalid
parameter. E_DPS_WRONG_SLAVE_ADDRESS in the high byte may indicate that an invalid address was
used.

You are not notified whether a control command (Sync or Freeze) was received. You are informed, however,
that the status Sync/Freeze-Enabled/-Disabled has changed. Information on the status of the inputs and/or
outputs can be interrogated through the data interface functions. The parameter ‘state’ is returned and
describes the status of the inputs/outputs. The commands Sync/Freeze have already been handled by the
ASIC and are referenced to the time the data buffer is exchanged in the ASIC. The status information is then
only for your information.

The firmware offers two monitoring mechanisms. The first mechanism is used for monitoring the application
(user_watchdog_timeout) and the second for monitoring the master (response monitoring). The response
monitoring of the slave assures that, in the case of a failure of the master, the outputs change into failsafe
state when the response monitoring time has run out. Application monitoring detects whether the application
accesses the data interface during the monitoring time.

Application

Master

Slave

Response monitoring (PRM)

user_watchdog

Fig.2-2: Monitoring mechanisms

DPS Services

Page: 4 PROFIBUS

3 DPS SERVICES

3.1 Dps_Init_Slave

When initializing the DP slave you assign it basic functionalities (such as Sync, Set_Slave_Add) as well as
time parameters.

The buffer of the ASIC used is limited to approx. 1.4 KB. For this reason, the memory needs to be allocated
during initialization according to the maximum lengths required for input and output, configuration,
parameterization, diagnostics and slave address change.

The data block of the service confirmation provides you with the value of the memory capacity that has
remained or is missing after initialization.

 Buffer
for

outputs

 Buffer
 for

 inputs

Buffer
for

data
for
set_

slave_
add

Auxil-
iary

buffer

Buffer
for

CFG
data

Buffer
for

diagnostic
data

Buffer
for

PRM
data

111 1213212 31

Fig.3.1-1: Allocation of the ASIC buffer

The firmware provides a monitoring mechanism for the application; this mechanism is enabled with the
parameter ‘user_watchdog_timeout’. If the application does not access the data interface within the specified
monitoring time, a timeout occurs. This has the following consequences:

• The slave leaves data exchange and the bits DPS_DIAG_BIT_STAT_DIAG and
DPS_DIAG_BIT_EXT_DIAG are set automatically. The slave remains in the operating state
DATA_EXCHANGE, however, it no longer exchanges any data but only diagnostic telegrams.

• When you interrogate the slave's state with the service ‘Dps_Get_Status’, the state state = E_DPS_TO
is returned. In addition, a 'Dps_Get_Status.ind' is generated.

The watchdog is retriggered each time the data interface is accessed. If a timeout occurred, you can reset it
by setting a diagnostic (see service ‘Dps_Slave_Diag’).

The service ‘Dps_Init_Slave’ must be called before all other DPS services. If this service was not called, all
requests are rejected with the error message E_IF_SERVICE_NOT_EXECUTABLE.

PROFIBUS Application Program Interface

User Manual Page: 5

Service-Description-Block for Request:

USIGN16 comm_ref not used
USIGN8 layer DPS
USIGN8 service DPS_INIT_SLAVE
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data Block for Request:

Data structure T_DPS_INIT_SLAVE_REQ

USIGN8 slave_add Station address of the slave
USIGN8 min_tsdr Minimum reaction time [Tbit]
PB_BOOL auto_cfg_response Checking the configuration data
PB_BOOL auto_prm_response Checking the parameterization data
PB_BOOL auto_startup_inputs Readying the first input data
PB_BOOL sync_mode_supported Freezing the output states
PB_BOOL freeze_mode_supported Freezing the inputs
PB_BOOL set_slave_add_supported Changing the slave address over the bus
USIGN8 max_input_data_len Maximum length of input data [byte]
 (0..DP_MAX_INPUT_DATA_LEN)
USIGN8 max_output_data_len Maximum length of output data [byte]
 (0..DP_MAX_OUTPUT_DATA_LEN)
USIGN8 max_cfg_data_len Maximum length of configuration data [byte]
 (1..DP_MAX_CFG_DATA_LEN)
USIGN8 max_usr_prm_data_len Maximum length of user-defined parameterization data [byte]
 (0..DP_MAX_USER_PRM_DATA_LEN)
USIGN8 max_ext_diag_data_len Maximum length of user-defined diagnostic data [byte]
 (0..DP_MAX_EXT_DIAG_DATA_LEN)
USIGN8 max_address_data_len Maximum length of address data [byte]
USIGN16 ident_number Ident number
USIGN16 user_watchdog_timeout Application monitoring time for data access [ms]
USIGN8 reserved[4] Reserved for enhancements. Must be set to 0
USIGN8 cfg_data_len Length of the configuration data [byte]
 (1..DP_MAX_CFG_DATA_LEN)
USIGN8 enhanced_init_data_len Reserved for enhancements. Must be set to 0
USIGN8 cfg_data[DP_MAX_CFG_DATA_LEN] Initial configuration data
USIGN8 enhanced_init_data[DPS_MIN_SERVICE_IF_LEN-DP_MAX_CFG_DATA_LEN-24]
 Reserved for enhancements

slave_add

0..125 Slave address

DPS_DEFAULT_SLAVE_ADD (126) The slave goes to the bus with the default address and does not exchange any data.

DPS_NON_VOLATILE_SLAVE_ADD The slave is assigned the address that is stored in nonvolatile memory. The default address
 stored is 126. Otherwise, any address that the master assigns the slave with the service
 ‘set_slave_add’ is taken over into nonvolatile memory.

NOTE:

 The slave can only be commissioned with the default address DPS_DEFAULT_SLAVE_ADD if the
parameter ‘set_slave_add_supported’ is set to PB_TRUE and memory was configured for
set_slave_add.

DPS Services

Page: 6 PROFIBUS

min_tsdr

The minimum reaction time is the minimum length of time the slave needs to wait before it is permitted to
return its reply telegrams to the DP master.

 0.. 10 Represents no change

11..255 Minimum reaction time

auto_cfg_response

PB_FALSE Configuration data transmitted by the master are passed on to the user. The user must check the
 configuration data and approve or reject the configuration with the service ‘Dps_Chk_Cfg.res’. The
 parameter ‘cfg_wait_response’ of the service ‘Dps_Get_Status’ or the ‘Dps_Chk_Cfg.ind’ indicate
 whether a response to the data is still to come.

PB_TRUE The slave's actual configuration is compared with the nominal configuration transmitted by the master.
 The check determines whether the information on format and length, the number of inputs and outputs
 and the consistency agree. The actual configuration is located in the parameter ‘cfg_data’.

auto_prm_response

PB_FALSE The vendor-specific parameterization data are checked by the user and either approved or rejected.
 Checking the standard parameterization data is performed by the slave. The parameter
 ‘prm_wait_response’ of the service ‘Dps_Get_Status’ or the ‘Dps_Set_Prm.ind’ indicate whether a
 response to the data is still to come.

PB_TRUE When the parameterization data were accepted by the slave, it automatically enters into user data
 exchange as soon as there are valid input data. If vendor specific parameterization data exist, they are
 transferred to he user without requiring a response.

auto_startup_inputs

After configuration and parameterization, the slave only changes into DATA_EXCHANGE state if the inputs
have been set for the first time.

PB_TRUE The first input data are automatically set to the value 0.

PB_FALSE Before the slave can enter into data exchange, the user needs to write the input data for the first time. The
 parameter ‘startup_input_wait’ of the service ‘Dps_Get_Status’ indicates whether input data need to be
 transferred. The input data are set with the function 'profi_set_dps_input_data'.

sync_mode_supported

PB_TRUE The function for freezing the output data is supported by the slave.

PB_FALSE The slave does not support the function for freezing the outputs.

PROFIBUS Application Program Interface

User Manual Page: 7

freeze_mode_supported

PB_TRUE The slave supports the function for freezing the inputs.

PB_FALSE The function for freezing the inputs is not supported by the slave.

set_slave_add_supported

PB_TRUE The station address of the slave can be changed over the bus with ‘set_slave_add’. The new
slave address is stored to the slave's nonvolatile memory.

PB_FALSE A change of the station address by the master is not supported by the slave.

max_address_data_len

If the slave supports a change of address over the bus, the maximum length of the address data must be set
to at least DPS_MIN_SSA_DATA_LEN.

0 Changing the slave address over the bus is not supported.

DPS_MIN_SSA_DATA_LEN ..
DP_MAX_TELEGRAM_LEN

NOTE:

 The ASIC buffer is too small to initialize a slave that contains 244 bytes of input and 244 bytes of
output data simultaneously. The maximum possible values are 216 bytes of input and 216 bytes of
output data simultaneousy. If max_cfg_data_len = 8, max_usr_prm_data_len = 0,
max_ext_diag_data_len = 0 and max_address_data_len = 0. 244 bytes of input or output data can
be achieved with max_input_data_len = DP_MAX_INPUT_DATA_LEN or- max_output_data_len =
DP_MAX_OUTPUT_DATA_LEN.

ident_number

The ident number for a PROFIBUS DP device is assigned by the PNO.

DPS_DEFAULT_IDENT_NUMBER The slave receives the ident number B205hex (Softing DP slave)

0xXXXX Any desired permissible ident number

NOTE:

 The ident number must correspond with the GSD file.

DPS Services

Page: 8 PROFIBUS

user_watchdog_timeout

Application monitoring time for data access [ms]

0 Watchdog is switched off

1..65535 Watchdog timeout

cfg_data[DP_MAX_CFG_DATA_LEN] Initial configuration data

The configuration data define the ranges of the input and output areas and specify information on data
consistency. The format complies with the form stipulated by the DP standard.
Configuration data are coded differently according to use.

It is recommended to divide the input and/or output areas into logic or physical modules. The logic modules
do not need to correspond with the physical modules. For each module you decide whether the configuration
data are to be coded as an ID byte or as a special ID format. The corresponding bytes per module are
arranged successively in any desired order. The order of the CFG bytes is used in ID-related and channel-
related diagnostics as well as for the Data_Exchange order.

There are two ways to represent the configuration data:

ID byte

Use: Data length less than or equal to 16 words, no vendor-specific data

01234567Bit no.

LSBMSB

Input/Output
00 not permitted
01 input
10 output
11 input and output

Length of the data
00 1byte or 1word
01 2bytes or 2words
 ...
15 16bytes or 16words

Format
0 byte structure
1 word structure

Consistency
0 consistency over byte or word
1 consistency over entire length

Meaning:

PROFIBUS Application Program Interface

User Manual Page: 9

Special ID format

Use: Data length less than or equal to 64 words, vendor-specific data

01234567Bit no.

LSBMSB

Input/Output
00 empty module
01 length byte for inputs following
10 length byte for outputs

following
11 length byte for outputs with

subsequent length byte for
inputs following

Length of the vendor-specific data
00 no vendor-specific data

following
01 vendor-specific data of
 ... specified length following;
14 must agree with existing data
15 no vendor-specific data

following

Fixed to 00

Meaning:

A length byte has the following structure:

01234567Bit no.

LSBMSB

Consistency
0 consistency over byte or word
1 consistency over entire length

Format
0 byte structure
1 word structure

Length of the inputs or outputs
00 1byte or 1word
01 2bytes or 2words
 ...
63 64bytes or 64words

Meaning:

DPS Services

Page: 10 PROFIBUS

Example of configuration data:

Module 1: 5 bytes input data, consistency over byte ID byte: 00010100 or 14hex

Module 2: 20 words output data, consistency over entire length, 3 bytes vendor-specific data
 Special ID format: 10000011 or 83hex
 Length byte: 11110101 or F5hex
 1st byte vendor-specific data
 2nd byte vendor-specific data
 3rd byte vendor-specific data

Module 3: 8 words input data, consistency over entire length
 ID byte: 11010111 or D7hex

Since you only need to pay attention to the order of the bytes within a module, cfg_data may have the
following format:

cfg_data[0] = 14hex
cfg_data[1] = D7hex
cfg_data[2] = 83hex
cfg_data[3] = F5hex
cfg_data[4] = 1st byte vendor-specific data
cfg_data[5] = 2nd byte vendor-specific data
cfg_data[6] = 3rd byte vendor-specific data

NOTE:

 The slave will only work consistently if the corresponding bit of the configuration data is set (see
 also ‘Dps_Chk_Cfg’).

PROFIBUS Application Program Interface

User Manual Page: 11

Service-Description-Block for Confirmation:

USIGN16 comm_ref not used
USIGN8 layer DPS_USR
USIGN8 service DPS_INIT_SLAVE
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS / NEG

Data Block for Confirmation:

result = POS:

Data structure T_DPS_INIT_SLAVE_CON

USIGN16 status E_DPS_OK
INT16 remaining_frame_memory Remaining memory for telegram buffer

result = NEG:

Data structure T_DPS_INIT_SLAVE_CON

USIGN16 status E_DPS_IV, E_DPS_NO
INT16 remaining_frame_memory Negative values indicate insufficient space

status

E_DPS_OK The slave was initialized successfully.

E_DPS_IV The service request contains an invalid parameter.The high byte of status contains the
 error cause; possible causes are:
 E_DPS_WRONG_SLAVE_ADDRESS
 E_DPS_SSA_REQUIRED
 E_DPS_WRONG_CFG_LEN
 E_DPS_WRONG_INPUT_LEN
 E_DPS_WRONG_OUTPUT_LEN
 E_DPS_WRONG_PRM_LEN
 E_DPS_WRONG_DIAG_LEN
 E_DPS_WRONG_SSA_LEN
 E_DPS_WRONG_ENHANCED_INIT_LEN
 E_DPS_NOT_ENOUGH_FRAME_MEMORY
 E_DPS_ILLEGAL_CFG_DATA.

E_DPS_NO The service cannot be executed in this operating state. The high byte of status contains the
error cause E_DPS_DUPLICATED_SERVICE.

NOTE:

 The memory layout is not changed bytewise. The change depends on the buffer type, the internal
alignment and their combinations, instead. The values for the remaining or missing memory
capacity may therefore change erratically.

DPS Services

Page: 12 PROFIBUS

3.2 Dps_Exit_Slave

The slave no longer participates in bus traffic. After calling the service 'Dps_Exit_Slave', the slave can be
reinitialized with ‘Dps_Init_Slave’.

Service-Description-Block for Request:

USIGN16 comm_ref not used
USIGN8 layer DPS
USIGN8 service DPS_EXIT_SLAVE
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data block for Request:

Data structure T_DPS_EXIT_SLAVE_REQ

No parameters

Service-Description-Block for Confirmationt:

USIGN16 comm_ref not used
USIGN8 layer DPS_USR
USIGN8 service DPS_EXIT_SLAVE
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS

Data block for Confirmation:

result = POS:

Data structure T_DPS_EXIT_SLAVE_CON

USIGN16 status E_DPS_OK

The slave no longer participates in bus traffic.

PROFIBUS Application Program Interface

User Manual Page: 13

3.3 Dps_Get_Status

The service Dps_Get_Status delivers data on the current operating state, diagnostic state, assigned ident
number, input and output areas, supported functions, address of the associated master, transfer rate of the
slave and, as applicable, expected user entries. If a relevant status change occurs, the slave automatically
reports this by means of an indication. The service can always be called after initialization by using
Dps_Init_Slave.

Service-Description-Block for Request:

USIGN16 comm_ref not used
USIGN8 layer DPS
USIGN8 service DPS_GET_STATUS
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data Block for Request:

Data structure T_DPS_GET_STATUS_REQ

No parameters

Service-Description-Block for Confirmation and Indication:

USIGN16 comm_ref not used
USIGN8 layer DPS_USR
USIGN8 service DPS_GET_STATUS
USIGN8 primitive CON / IND
INT8 invoke_id not used
INT16 result POS / NEG

Data Block for Confirmation and Indication:

result = POS / NEG:

Data structure T_DPS_GET_STATUS_CON_IND

USIGN16 status E_DPS_OK, E_DPS_TO
USIGN8 slave_state Operating state of the DP slave
USIGN8 diag_state Diagnostic state of the DP slave
USIGN16 ident_number Ident number
USIGN8 number_inputs Number of inputs [byte]
USIGN8 number_outputs Number of outputs [byte]
USIGN8 slave_add Current address of the DP slave
USIGN8 non_volatile_slave_add DP slave address stored in nonvolatile memory
USIGN8 master_add Address of the DP master that parameterized the slave and
 carries out the cyclic data exchange
USIGN8 baud_rate Transfer rate detected by the ASIC (only for information)
PB_BOOL sync_enabled Status of the outputs
PB_BOOL freeze_enabled Status of the inputs
PB_BOOL clear_data DP master in operating state CLEAR
PB_BOOL cfg_await_response Response to the configuration data
PB_BOOL prm_await_response Response to the parameterization data
PB_BOOL await_startup_inputs Setting the input data
USIGN8 reserved[16] Reserved for enhancements. (0 =Ignore)

DPS Services

Page: 14 PROFIBUS

status

E_DPS_OK The status interrogation was executed correctly.

E_DPS_TO The application monitoring time has run out. It can be reset by setting a new
 diagnostic which sets the bit DPS_DIAG_BIT_STAT_DIAG to 0.

slave_state

DPS_STATE_IDLE The slave has not yet detected a transfer rate or no bus traffic is taking place.

DPS_STATE_WAIT_PRM The slave could detect a valid transfer rate but has not yet received any
 parameterization data from the master

DPS_STATE_WAIT_CFG Parameterizing the slave has been concluded and configuration data areawaited.

DPS_STATE_DATA_EXCHANGE The slave was configured successfully and is exchanging user data or is in diagnostic
 mode.

DPS_STATE_CONTROLLER_ERROR Fatal error in the ASIC.

diag_state

00H A standard diagnostic (simple status message) is present.

DPS_DIAG_BIT_EXT_DIAG The diagnostic is rated as an important message (such as an alarm).

DPS_DIAG_BIT_STAT_DIAG The master will retrieve diagnostic information until this bit is cleared again. During
 this time no user data are exchanged although the slave is in DATA_EXCHANGE
 state.

DPS_DIAG_BIT_EXT_DIAG_OVERFLOW This bit can be influenced by both master and slave: The master sets the bit when the
 slave transmits more diagnostic information than the master can take into account in
 its diagnostic buffer The slave user sets it when there are more diagnostic information
 than the firmware can process; not even by means of repeated ‘Dps_Slave_Diag.req’.

ident_number

The ident number currently used for the slave is displayed with this parameter.

number_inputs

0..244 bytes of input data; information on the consistency can only be determined from the
configuration data.

PROFIBUS Application Program Interface

User Manual Page: 15

number_outputs

0..244 bytes of output data; information on the consistency can only be determined from the configuration
data.

slave_add

0..125 Current bus address of the slave

126 Default address of a slave that is being commissioned for the first time and receives a
 valid address through ‘set_slave_add’. No data exchange takes place at this address.

non_volatile_slave_add

0..126 An address that the master assigns to the slave with the service ‘set_slave_add’ is
taken over into nonvolatile memory.

master_add

0..125 Master address

DP_NO_MASTER_ADDRESS The slave has not been assigned to a master.

baud_rate

DPS_KBAUD_9_6 9.6 kbits/s

DPS_KBAUD_19_2 19.2 kbits/s

DPS_KBAUD_45_45 45.45kbits/s

DPS_KBAUD_93_75 93.75 kbits/s

DPS_KBAUD_187_5 187.5 kbits/s

DPS_KBAUD_500 500 kbits/s

DPS_MBAUD_1_5 1.5 Mbits/s

DPS_MBAUD_3 3 Mbits/s

DPS_MBAUD_6 6 Mbits/s

DPS_MBAUD_12 12 Mbits/s

DPS_NO_BUS_TRAFFIC There is no bus traffic or the baud rate was not detected.

DPS Services

Page: 16 PROFIBUS

sync_enabled

PB_TRUE The slave supports the function for freezing the output data.

PB_FALSE The output data cannot be frozen by using Global_Control.

freeze_enabled

PB_TRUE The input data can be frozen by using Global_Control.

PB_FALSE The slave does not support the function for freezing the input data.

clear_data

PB_TRUE The master is in the operating state CLEAR; the output data are therefore set to
failsafe state (to 0).

PB_FALSE The master is not in CLEAR state but in a different operating state.

cfg_await_response

PB_TRUE The user must approve or reject the configuration data with the service
‘Dps_Chk_Cfg’.

PB_FALSE No response expected from the user.

prm_await_response

PB_TRUE An approval or a rejection of the parameterization data is being awaited.The service
 ‘Dps_Set_Prm’ is still to come.

PB_FALSE No response expected from the user.

await_startup_inputs

PB_TRUE The input data must be set by the user by means of ‘profi_set_dps_input_data’.
 Otherwise,the slave will remain in the diagnostic state 'station_not_ready'.

PB_FALSE The input data have been assigned a valid value by default.

PROFIBUS Application Program Interface

User Manual Page: 17

3.4 Dps_Slave_Diag

The status or error information stored in the DP slave is referred to as diagnostic information. A diagnostic
can be rated as an important message (such as an alarm) or a simple status message (such as resetting the
alarm).

A diagnostic consists of standard and extended diagnostic information. The extended diagnostic information
contains the status messages, the meaning of which must be declared according to the specific application,
unless you are using one of the predefined types of diagnostic.

Due to the functionality of the firmware, the user can only set three diagnostic bits of the standard diagnostic
to active, the remainder is filled in by the firmware.

Service-Description-Block for Request:

USIGN16 comm_ref not used
USIGN8 layer DPS
USIGN8 service DPS_SLAVE_DIAG
USIGN8 primitive REQ
INT8 invoke_id not used
INT16 result not used

Data Block for Request:

Data structure T_DPS_SLAVE_DIAG_REQ

USIGN8 diag_state Diagnostic state
USIGN8 ext_diag_data_len Length of the slave-specific diagnostic data [byte]

 (0..DP_MAX_EXT_DIAG_DATA_LEN)
USIGN8 ext_diag_data[DP_MAX_EXT_DIAG_DATA_LEN]
 Slave-specific diagnostic data

diag_state

The individual bits of the diagnostic state result in the slave's diagnostic state to be set. This is performed
through an OR operation.

00H A standard diagnostic (simple status message) is present (corresponds to"OK").

DPS_DIAG_BIT_EXT_DIAG The diagnostic is rated as an important message (such as an alarm), i.e. it must be
 treated with a high precedence.

DPS_DIAG_BIT_STAT_DIAG "Static diagnostic": The master will retrieve diagnostic information until this bit is
 cleared again. During this time, no user data are exchanged.

DPS_DIAG_BIT_EXT_DIAG_OVERFLOW If this bit is set, there are more diagnostic information than can be processed by
 means of Dps_Set_Slave_Diag.

NOTE:

 The bit 'DPS_DIAG_BIT_EXT_DIAG' does not indicate that ext_diag_data exist; it only shows the
meaning of the diagnostic (i.e. alarm or status message).

DPS Services

Page: 18 PROFIBUS

Device-related diagnostic

The block of the device-related diagnostic consists of a header byte and a variable number of bytes with
device-specific diagnostic data. In this block, general diagnostic information, such as excess temperature or
over- or undervoltage, is stored. Coding is determined depending on the specific device. Further evaluation
requires the Ident_Number and the GSD file.

01234567Bit no.

LSBMSB

Block length including the header
byte
 2 1byte diagnostic following
...
63 62bytes diagnostics

Fixed to 00

Meaning:

Header byte:

Example of a device-related diagnostic:

Device-related diagnostic: 00000100 or 04hex

ext_diag_data[0] = 04hex
ext_diag_data[1] = device-specific diagnostic
ext_diag_data[2] = device-specific diagnostic
ext_diag_data[3] = device-specific diagnostic

ID-related diagnostic (module diagnostic)

The block of the ID-related diagnostic consists of a header byte and a variable number of bytes with ID-
related diagnostic data. One bit is reserved for each ID byte assigned during configuration. The structure of
each bit is filled in to the byte boundary. In this process, the value zero must be assigned to not configured
bits. A set bit means that a diagnosis is pending in this I/O area but does not indicate the type of diagnostic.
The order that was determined during configuration must be kept.

01234567Bit no.

LSBMSB

Block length including the header
byte
 2 1byte diagnostic following
...
63 62bytes diagnostics following

Fixed to 01

Meaning:

Header byte:

PROFIBUS Application Program Interface

User Manual Page: 19

The bit structure for the ID-related diagnostic is as follows:

01234567Bit no.

LSBMSB

ID byte 7 has diagnostic
etc.

ID byte 1 has diagnostic

ID byte 0 has diagnostic

 .
 .
 .

Meaning:

Example of an ID-related diagnostic:

ID-related diagnostic: 01000101 or 45hex
ID number 0 with diagnostic: 00000001 or 01hex
ID number 12 with diagnostic: 00010000 or 10hex
ID number 18 with diagnostic: 00000100 or 04hex

ext_diag_data[0] = 45hex
ext_diag_data[1] = 01hex
ext_diag_data[2] = 10hex
ext_diag_data[3] = 04hex
ext_diag_data[4] = 00hex

Channel-related diagnostic

In this block, the diagnosed channels and the diagnostic causes are entered successively. The length per
entry is three bytes.

ID number:

01234567Bit no.

LSBMSB

ID number
 0
...
63

Fixed to 10

Meaning:

DPS Services

Page: 20 PROFIBUS

Channel number:

01234567Bit no.

LSBMSB

Channel number
 0
...
63

Input/Output
00 reserved
01 input
10 output
11 input/output

Meaning:

Type of diagnostic:

01234567Bit no.

LSBMSB

Type of error
 0 reserved
 1 short circuit
 2 undervoltage
 3 overvoltage
 4 overload
 5 excess temperature
 6 line break
 7 upper limit exceeded
 8 lower limit fallen below
 9 error
10..15 reserved
16..31 vendor-specific

Type of channel*
000 reserved
001 1bit
010 2bits
011 4bits
100 1byte
101 1word
110 2words
111 reserved

Meaning:

Note: The channel type is used for diagnostics only and
has an influence on the IDs and modules,
respectively, that were determined in the

PROFIBUS Application Program Interface

User Manual Page: 21

Example of a channel-related diagnostic:

Channel-related diagnostic with ID number 0: 10000000 or 80hex
Channel2 as input: 01000010 or 42hex
Overload, channel organized bitwise: 00100100 or 24hex
Channel-related diagnostic with ID number 12: 10001100 or 8Chex
Channel6 as output: 10000110 or 86hex
Upper limit exceeded, channel organized wordwise: 10100111 or A7hex

ext_diag_data[0] = 80hex
ext_diag_data[1] = 42hex
ext_diag_data[2] = 24hex
ext_diag_data[3] = 8Chex
ext_diag_data[4] = 86hex
ext_diag_data[5] = A7hex

Service-Description-Block for Confirmation:

USIGN16 comm_ref not used
USIGN8 layer DPS_USR
USIGN8 service DPS_SLAVE_DIAG
USIGN8 primitive CON
INT8 invoke_id not used
INT16 result POS / NEG

Data Block for Confirmation:

result = POS:

Data structure T_DPS_SLAVE_DIAG_CON

USIGN16 status E_DPS_OK

result = NEG:

Data structure T_DPS_SLAVE_DIAG_CON

USIGN16 status E_DPS_IV, E_DPS_NO

status

E_DPS_OK The diagnostic data were set.

E_DPS_IV The service request contains an invalid parameter. The high byte of status contains the error
 cause; possible causes are:
 E_DPS_WRONG_DIAG_LEN
 E_DPS_INVALID_DIAG_STATE
 E_DPS_INVALID_EXT_DIAG_DATA.

E_DPS_NO The service cannot be executed in this operating state (the service ‘Dps_Init_Slave’ was not
 executed).

DPS Services

Page: 22 PROFIBUS

3.5 Dps_Chk_Cfg

The configuration data describe the size of the input and output data areas and provide information on their
data consistency. The format is defined in the DP standard (see also ‘Dps_Init_Slave’).

The configuration data transmitted by the master are automatically compared with the actual configuration of
the slave if the parameter 'auto_cfg_response' was set to PB_TRUE during the initialization of the slave. The
configuration is accepted if the format and the length specifications as well as the input/output areas agree.
A consistency is only assured if the applicable bit of the configuration data has been set. Consistency
means, with regard to the slave, that the data are always read and written completely. Should all data require
no consistency, the slave will copy bytewise without synchronization, a process which takes a bit less time.
The interrupt mode of the PAPI always works consistently.

The user will only be informed of new configuration data if the parameter 'auto_cfg_response' was set to
PB_FALSE during the initialization of the slave. The indication passes on the nominal configuration to the
user for checking. With the response, the user decides whether the configuration is approved or rejected.
Whether a response is still to come is indicated by the parameter ‘cfg_wait_response’ of the service
‘Dps_Get_Status’.

Service-Description-Block of the Indication:

USIGN16 comm_ref not used
USIGN8 layer DPS_USR
USIGN8 service DPS_CHK_CFG
USIGN8 primitive IND
INT8 invoke_id not used
INT16 result POS

Data Block of the Indication:

Data structure T_DPS_CHK_CFG_IND

USIGN16 status E_DPS_OK: Configuration data were received
USIGN8 cfg_data_len Length of the configuration data
 (1..DP_MAX_CFG_DATA_LEN)
PB_BOOL cfg_await_response Response to the indication
 PB_TRUE: A response is being awaited (the user still needs to
 generate a Dps_Chk_Cfg.res)
PB_BOOL cfg_await_response Response to the indication

PROFIBUS Application Program Interface

User Manual Page: 23

Service-Description-Block of the Response:

USIGN16 comm_ref not used
USIGN8 layer DPS
USIGN8 service DPS_CHK_CFG
USIGN8 primitive RES
INT8 invoke_id not used
INT16 result POS / NEG

Data Block of the Response :
result = POS:

Data structure T_DPS_CHK_CFG_RES

USIGN16 status E_DPS_OK

result = NEG:

Data structure T_DPS_CHK_CFG_RES

USIGN16 status E_DPS_NO

status

E_DPS_OK The configuration is approved.

E_DPS_NO The configuration is rejected and the slave changes into WAIT_PRM state.

DPS Services

Page: 24 PROFIBUS

3.6 Dps_Set_Prm

The parameterization of the DP slave is initially performed in the startup and runup phases of the DP system,
but is also permitted in user data exchange.

The user will be informed of new parameterization data provided that user_prm_data are contained,
independent of the initialization of the slave. The parameter 'auto_prm_response' determines whether the
parameterization data are to be transferred to the user for checking and require a response.

Service-Description-Block of the Indication:

USIGN16 comm_ref not used
USIGN8 layer DPS_USR
USIGN8 service DPS_SET_PRM
USIGN8 primitive IND
INT8 invoke_id not used
INT16 result not used

Data Block of the Indication:

Data structure T_DPS_SET_PRM_IND

USIGN16 status E_DPS_OK: Parameterization data were received
USIGN8 user_prm_data_len Length of the vendor-specific parameterization data
 (0..DP_MAX_USER_PRM_DATA_LEN)
USIGN8 prm_await_response Response to the indication
USIGN8 station_status Status of the DP slave
USIGN8 wd_fact_1
USIGN8 wd_fact_2 Factors of response monitoring
USIGN8 min_tsdr Minimum reaction time [Tbit]
USIGN16 ident_number The ident number that is currently used for the slave is
 displayed with this parameter.
USIGN8 group_ident Identification bits for the formation of groups in Global_Control.
USIGN8 user_prm_data [DP_MAX_USER_PRM_DATA_LEN]
 Vendor-specific parameterization data (such as limits or
 controller parameters)

prm_await_response

PB_TRUE The parameterization data must be checked by the user and a corresponding response must be
 generated.

PB_FALSE The indication only serves for reporting vendor-specific parameterization data, if there are any.
A response by the user is not required.

PROFIBUS Application Program Interface

User Manual Page: 25

station_status

DP_PRM_WD_ON The response monitoring of the slave has been enabled. It assures that, in the case of a
 failure of the master, the outputs are switched into failsafe state (CLEAR mode) as soon as the
 response monitoring time runs out.

DP_PRM_FREEZE_REQ The slave is to be operated in Freeze mode as soon as it receives a corresponding command
 (Global_Control).

DP_PRM_SYNC_REQ The slave is to be operated in Sync mode as soon as it receives a corresponding
 Global_Control command.
DP_PRM_UNLOCK_REQ

DP_PRM_LOCK_REQ For the meaning please refer to the table. These parameters cannot be influenced by the user;
 they are evaluated by the firmware and are only for information.

DP_PRM_LOCK_REQ

DP_PRM_RM_UNLOCK_REQ

Meaning

0

0

min TSDR is overwritten,
all other parameters remain unaffected

0

1

DP slave is enabled for other masters

1

0

DP slave is disabled for other masters,
all other parameters are taken over

(exception: min TSDR = 0)

1

1

DP slave is enabled for other masters

 Table 6-1: Determination of the bits DP_PRM_LOCK_REQ and DP_PRM_UNLOCK_REQ

wd_fact_1, wd_fact_2

From the above factors, the response monitoring time can be calculated as follows:

• Response monitoring time [ms] = Time basis of the watchdog * wd_fact_1 * wd_fact_2

The time basis of the watchdog can be fixed to 1ms or 10ms (default: 10ms). It is determined in the first byte
of the vendor-specific parameterization data (see parameter ‘user_prm_data’). 0..255

NOTE:

 It is not recommended to use a response monitoring time of less than 2ms or 20ms since the
 times are below a timer tick and can therefore run out immediately. Monitoring times
 between 2ms or 20ms and 650s can be realized reliably.

DPS Services

Page: 26 PROFIBUS

min_tsdr

The minimum reaction time is the length of time that the slave must at least wait before it is permitted to send
its reply telegrams back to the DP master.

 0.. 10 The previous value for the minimum reaction time is retained

11..255 Minimum reaction time

group_ident

The identification bit is assigned by the master during the runup phase. A slave may belong to several
groups. Each identification bit represents a group. The slave is addressed whenever the bit of its group is set
in the Global_Control command.

user_prm_data [DP_MAX_USER_PRM_DATA_LEN]:

NOTE:

 The first byte of the vendor-specific data cannot be used freely since it is preassigned by the
ASIC. The individual bits have the following meanings:

Bit7: Fixed to 0
Bit6: Fixed to 0
Bit5: Fixed to 0
Bit4: Fixed to 0
Bit3: Fixed to 0
Bit2 (DPS_SPC3_USR_PRM_WD_BASE_1MS): 0 ⇒ Time basis of watchdog is 10ms
 1 ⇒ Time basis of watchdog is 1ms
Bit1 (DPS_SPC3_USR_PRM_DISABLE_STOPBIT): 0 ⇒ Stop bit monitoring is not switched off
 1 ⇒ Stop bit monitoring is switched off
Bit0 (DPS_SPC3_USR_PRM_DISABLE_STARTBIT): 0 ⇒ Start bit monitoring is not switched off
 1 ⇒ Start bit monitoring is switched off.

PROFIBUS Application Program Interface

User Manual Page: 27

Service-Description-Block of the Response:

USIGN16 comm_ref not used
USIGN8 layer DPS
USIGN8 service DPS_SET_PRM
USIGN8 primitive RES
INT8 invoke_id not used
INT16 result POS / NEG

Data Block of the Response:

result = POS:

Data structure T_DPS_SET_PRM_RES

USIGN16 status E_DPS_OK

result = NEG:

Data structure T_DPS_SET_PRM_RES

USIGN16 status E_DPS_NO

status

E_DPS_OK The parameterization data are approved.

E_DPS_NO The parameterization data are rejected, the slave remains in WAIT_PRM state.

DPS Services

Page: 28 PROFIBUS

3.7 Dps_Set_Slave_Add

If during initialization the parameter 'set_slave_add_supported' was set, the DP slave supports an address
assignment over the bus. When the slave is assigned a new address, this is reported by means of an
indication. The slave is then in the operating state WAIT_PRM. The new address is stored to the NVRAM.

This service is only provided for informing the user and cannot be executed actively (you cannot transmit a
request). It is determined with the help of Dps_Init_Slave.

Service-Description-Block of the Indication:

USIGN16 comm_ref not used
USIGN8 layer DPS_USR
USIGN8 service DPS_SET_SLAVE_ADD
USIGN8 primitive IND
INT8 invoke_id not used
INT16 result not used

Data Block of the Indication:

Data structure T_DPS_SET_SLAVE_ADD_IND

USIGN16 status E_DPS_OK: The slave address was changed and the new
 address stored in nonvolatile memory.
USIGN8 rem_slave_data_len Length of the user-defined data
 (0..DP_MAX_REM_SLAVE_DATA_LEN)
USIGN8 new_slave_add New slave address
USIGN16 ident_number Ident number assigned by the PTO.
PB_BOOL no_add_chg Changing the slave address
OCTET rem_slave_data [DP_MAX_REM_SLAVE_DATA_LEN]
 User-defined data

new_slave_add

0..125 The new address was stored in nonvolatile memory and can be reused with the service
 ‘Dps_Init_Slave’ via NON_VOLATILE_SLAVE_ADD.

no_add_chg

This parameter is not stored to the NVRAM. It therefore only remains effective until the slave is restarted.

PB_TRUE The slave address can be changed once again later.

PB_FALSE The station address of the slave can no longer be changed over the bus until the slave is
 restarted.

PROFIBUS Application Program Interface

User Manual Page: 29

NOTE:

 The master cannot determine for sure whether the address assignment was successful. You
should therefore check the address assignment with the help of a slave diagnostic.

 The master can only change the slave address if the slave is currently not in cyclic data exchange
with the master.

PROFIBUS Application Program Interface

Tools Library

Version 5.2
Rev. 01

Date: 03-March-1998

Softing AG
Richard-Reitzner-Allee 6
D-85540 Haar
Phone (++49) 89 45 65 6 - 0
Fax (++49) 89 45 65 6 - 399

 Copyright by Softing AG, 1989-2003
All rights reserved.

PROFIBUS User Manual

PROFIBUS Application Program Interface

Copyright Notice

All rights are reserved. No part of these instructions may be reproduced (printed material,
photocopies, microfilm or other method) or processed, copied or distributed using electronic
systems in any form whatsoever without prior written permission of Softing AG.

The producer reserves the right to make changes to the scope of supply as well as changes to
technical data, even without prior notice.

A great deal of attention was made to the quality and functional integrity in designing,
manufacturing and testing the system. However, no liability can be assumed for potential errors
that might exist or for their effects. Should you find errors please inform your distributor of the
nature of the errors and the circumstances under which they occur. We will be responsive to all
reasonable ideas and will follow up on them, taking measures to improve the product if
necessary.

We call your attention to the fact that the company name and trademark as well as product
names are, as a rule, protected by trademark, patent and product brand laws.

Copyright 1989-2003 by Softing AG, Haar

Tools Library

User Manual Page: I

CONTENTS

1 SCOPE ...1

2 BUS PARAMETER SETS ..2

2.1 GET DEFAULT BUS PARAMETERS ...2
2.2 TABLES OF DEFAULT BUS PARAMETER SETS...3

2.2.1 Recommended Bus Parameters for FMS/FM7 Operation using ASPC2............................3
2.2.2 Recommended Bus Parameters for simultaneous DP / FMS Operation4
2.2.3 Recommended Bus Parameters for DP Operation ...5

3 COMMUNICATION RELATIONSHIP LIST RESOURCES ..6

3.1 RESOURCES INIT..6
3.2 RESOURCES ADD ENTRY..7

PROFIBUS Application Program Interface

Page: II PROFIBUS

Tools Library

User Manual Page: 1

1 SCOPE

This manual describes the User Toolkit for easy configuration of SOFTING’s PROFIBUS controllers.

The Toolkit provides C-functions to

• Get default bus parameter sets

• Calculate CRL memory requirements.

GmbH

PROFIBUS Application Program Interface

2 BUS PARAMETER SETS

Setting up a consistent set of bus barameters for a PROFIBUS network is no trivial task. For best
performance the parameter set has to be calculated individually, among others regarding the number of
masters and slaves, as well as the amount of data to be transferred in a cycle. Nevertheless default sets of
parameters that will work with most PROFIBUS configurations can be given for all baud rates (see also
manual Basic Management chapter 3.2.1).

.

2.1 GET DEFAULT BUS PARAMETERS

The function pbt_get_fmb_def_bus_param provides default bus parameters for PROFIBUS stations
dependend of the desired baud_rate and operation mode.

The function has the following prototype:

extern PB_BOOL pbt_get_fmb_def_bus_param
 (
 IN USIGN8 baud_rate,
 IN USIGN8 station_addr,
 IN PB_BOOL in_ring_desired,
 IN UNSIGN16 mode
 OUT T_FMB_SET_BUSPARAMETER_REQ FAR* bus_param_ptr
);

Function parameter description:

baud_rate: desired baudrate (see valid baudrates)
station_addr: desired station address (0..126)
in_ring_desired: PB_TRUE ⇒ active station (master)
 PB_FALSE ⇒ passive station (slave)
mode: DP_MODE ⇒ standalone DP operation
 DP_FMS_FM7_MODE ⇒ simultaneous DP/FMS/FM7 operation
 FMS_FM7_MODE ⇒ standalone FMS/FM7 operation
bus_param_ptr: pointer to FMB bus parameter structure

Possible function return values:

- PB_TRUE parameters correctly set
- PB_FALSE no parameter set available, no parameters set

Page: 2 PROFIBUS

Tools Library

User Manual Page: 3

2.2 TABLES OF DEFAULT BUS PARAMETER SETS

This chapter of the manual describes the Default Bus Parameter Sets up to 12000 kbit/s that are returned
by the function pbt_get_fmb_def_bus_param.

The values are taken from EN 50170/2 (FDL and DP) and from the implementation guide to EN E 50170 / 2
(DP) recommendations for ASIC ASPC2 based hardware platforms.

The following tables show the settings for the Default Bus Parameter Sets:

2.2.1 Recommended Bus Parameters for FMS/FM7 Operation using ASPC2

Parameter/Baudrate 9,6
Kbaud

19,2
Kbaud

45,45
Kbaud

93.75
Kbaud

187,5
KBaud

500
KBaud

1,5
MBaud

3
MBaud

6
MBaud

12
MBaud

TSL
[bit times]

100 200 - 500 1000 2000 3000 400 600 1000

min_TSDR

[bit times]
30 60 - 125 250 500 150 11 11 11

max_TSDR

[bit times]
50 100 - 250 500 1000 980 250 450 800

TSET
[bit times]

5 10 - 15 25 50 240 4 8 16

TQUI
[bit times]

22 22 - 22 22 22 0 3 6 9

G

1 1 - 1 1 1 10 10 10 10

HSA

126 126 - 126 126 126 126 126 126 126

Max_Retry_Limit

1 1 - 1 1 1 1 2 3 4

TTR
[bit times]

10000 15000 - 30000 50000 100000 300000 600000 1200000 2400000

The default values for 45,45 kbit/s are not defined for single FMS operation.

GmbH

PROFIBUS Application Program Interface

2.2.2 Recommended Bus Parameters for simultaneous DP / FMS Operation

Parameter/Baudrate 9,6
Kbaud

19,2
KBaud

45,45
KBaud

93.75
Kbaud

187,5
KBaud

500
KBaud

1,5
Mbaud

3
MBaud

6
MBaud

12
MBaud

TSL
[bit times]

125 250 640 600 1500 3500 3000 400 600 1000

min_TSDR

[bit times]
30 60 11 125 250 500 150 11 11 11

max_TSDR

[bit times]
60 120 400 250 500 1000 980 250 450 800

TSET
[bit times]

1 1 95 1 1 1 240 4 8 16

TQUI
[bit times]

0 0 0 0 0 0 0 3 6 9

G

1 1 10 1 1 1 10 10 10 10

HSA

126 126 126 126 126 126 126 126 126 126

Max_Retry_Limit

1 1 1 1 1 1 1 2 3 4

TTR
[Bitzeiten]

- - - - - - - - - -

The baudrate 45,45 kbit/s is only used for DP- and PA -systems with coupling devices.

Page: 4 PROFIBUS

Tools Library

User Manual Page: 5

2.2.3 Recommended Bus Parameters for DP Operation

Parameter/Baudrate 9,6
Kbaud

19,2
KBaud

45,45
KBaud

93.75
Kbaud

187,5
KBaud

500
KBaud

1,5
Mbaud

3
MBaud

6
MBaud

12
MBaud

TSL
[bit times]

100 100 640 100 100 200 300 400 600 1000

min_TSDR

[bit times]
11 11 11 11 11 11 11 11 11 11

max_TSDR

[bit times]
60 60 400 60 60 100 150 250 450 800

TSET
[bit times]

1 1 95 1 1 1 1 4 8 16

TQUI
[bit times]

0 0 0 0 0 0 0 3 6 9

G

1 1 10 1 1 1 10 10 10 10

HSA

126 126 126 126 126 126 126 126 126 126

Max_Retry_Limit

1 1 1 1 1 1 1 2 3 4

TTR
[Bitzeiten]

- - - - - - - - - -

The baudrate 45,45 kbit/s is only used for DP- and PA -systems with coupling devices.

GmbH

PROFIBUS Application Program Interface

3 COMMUNICATION RELATIONSHIP LIST RESOURCES

The memory requirements of a CRL depend on the number of CRL entries, the connection types, the
number of parallel services, etc. (see also manual Basic Management chapter 4.1.2).

A comfortable way to find out the memory requirements is offered by the following functions. These functions
do low level checks on a CRL and calculate the memory requirements.

3.1 RESOURCES INIT

At first the function ccrl_resrcs_init has to be called to initialize the internal structures for calculating the
memory requirements.

The function has the following prototype:

extern VOID ccrl_resrces_init
(

 IN T_FM7_CRL_HDR FAR* crl_hdr
);

Function parameter description:

crl_hdr: pointer to CRL header structure

Possible function return values:

- NONE

Page: 6 PROFIBUS

Tools Library

User Manual Page: 7

3.2 RESOURCES ADD ENTRY

For each CRL entry the function ccrl_resrces_add_entry has to be called to evaluate the number of
resources.

Two actions are performed by this function. First, it checks the CRL entry. If the entry is incorrect it tries to
correct it. If the entry cannot be corrected it returns with a negative result. If the entry is OK,
ccrl_resrces_add_entry calculates resources. After function return, the output buffer holds the sum of
resources that are needed by all CRL entries that where put into ccrl_resrces_add_entry since last call of
ccrl_resrces_init. The result after the last call of ccrl_resrces_add_entry this is the number of all needed
resources for the whole CRL. This result can be used as input for the PROFIBUS configuration service.

The function has the following prototype:

extern USIGN16 ccrl_resrces_add_entry
 (
 IN USIGN16 cr,
 IN T_FM7_CRL_STATIC FAR* crl_ptr,
 OUT T_FMB_CONFIG_CRL FAR* config_ptr
);

Function parameter description:

cr: communication reference
crl_ptr: pointer to static part of the CRL entry
config_ptr: pointer to CRL configuration structure

Possible function return values:

- E_OK function executed correctly
- E_FM7_CRL_INVALID_ENTRY invalid entry found in CRL, resource not calculated

	INTRODUCTION
	1 ABOUT THIS MANUAL
	2 RELATED PUBLICATIONS
	3 RELEASE NOTES

	SOFTWARE INSTALLATION
	CONTENTS
	1 SCOPE
	2 DELIVERABLES
	3 SOFTWARE INSTALLATION
	3.1 REQUIREMENTS AND PREPARATION
	3.2 WINDOWS XP, WINDOWS 2000 AND WINDOWS NT
	3.2.1 Installation procedure
	3.2.2 Uninstall support
	3.2.3 Directory structure and installed files
	3.2.3.1 PROFIBUS Runtime System
	3.2.3.2 PROFIBUS Software Development Kit

	3.3 WINDOWS ME AND WINDOWS 9X
	3.3.1 Installation procedure
	3.4.2 Uninstall support
	3.4.3 Directory structure and installed files
	3.4.3.1 PROFIBUS Windows Runtime System
	3.4.3.2 PROFIBUS Software Development Kit

	4 FIRMWARE UPDATE
	4.1 WINDOWS XP, WINDOWS 2000 AND WINDOWS NT
	4.2 WINDOWS ME AND WINDOWS 9X

	DRIVER CONFIGURATION
	CONTENTS
	GENERAL
	HARDWARE RESOURCES
	PROFIBOARD-ISA, PROFI104 AND PROF104-S
	PROFICARD
	PROFIBOARD-PCI

	PROFIBUS CONTROL PANEL APPLET
	OVERVIEW
	PROFIBUS tree
	Information area
	Status bar
	Buttons

	SCAN NODES (ONLY WINDOWS XP, WINDOWS 2000 AND WINDOWS NT)
	UPDATE FIRMWARE (ONLY WINDOWS ME AND WINDOWS 9X)
	ADD- AND EDIT A PROFIBUS INTERFACE
	Select Node Name (only Windows XP, Windows 2000 and Windows NT)
	Select Operating Mode
	PROFIboard-ISA, PROFI104 and PROFI104-S parameters
	PROFIcard / PROFIcard 2 parameters
	PROFIcard / PROFIcard 2 parameters using Windows XP, Windows 2000 or� Windows ME/9x
	PROFIcard / PROFIcard 2 parameters using Windows NT
	PROFIcard / PROFIcard 2 software interface
	PROFIcard / PROFIcard 2 (NT standard)
	PROFIcard / PROFIcard 2 (Cardware)

	PROFIboard-PCI parameters
	PROFIgate / FG-300 parameters
	PROFIgate / FG-300 address
	Timeout parameters for PROFIgate / FG-300

	REMOVE A PROFIBUS INTERFACE

	USER INTERFACE
	CONTENT
	1 SCOPE
	2 OVERVIEW
	3 USER INTERFACE USING WINDOWS ME / 9X
	3.1 INITIALIZATION AND SHUT DOWN
	3.1.1 Profi-Init and Profi-Set-Default
	3.1.2 Profi-End

	3.2 SEND / RECEIVE INTERFACE
	3.2.1 PROFIBUS Service Description Block
	3.2.2 Profi-Snd-Req-Res
	3.2.3 Profi-Rcv-Con-Ind

	3.3 DATA INTERFACE
	3.3.1 Profi-Set-Data
	3.3.2 Profi-Get-Data
	3.3.3 Profi-Set-Dps-Input-Data
	3.3.4 Profi-Get-Dps-Input-Data
	3.3.5 Profi-Get-Dps-Output-Data

	3.4 ADDITIONAL INTERFACE FUNCTIONS
	3.4.1 Profi-Ack-Irq
	3.4.2 Profi-Get-Versions
	3.4.3 Profi-Get-Serial-Device-Number
	3.4.4 Profi-GetLast-Error

	3.5 INTERFACE RETURN VALUES

	4 USER INTERFACE USING WINDOWS XP, WINDOWS 2000 OR WINDOWS NT
	4.1 LOGICAL DEVICES
	4.1.1 Directory structure of logical devices
	4.1.2 Low-level devices
	4.1.2.1 Board device
	4.1.2.2 General service device
	4.1.2.3 General DP-Master data device
	4.1.2.4 General DP-Slave input data device
	4.1.2.5 General DP-Slave output data device

	4.1.3 Management devices
	4.1.3.1 Basic management device
	4.1.3.2 DP management device
	4.1.3.3 FMS management device
	4.1.3.4 FDL management device

	4.1.4 Data-oriented high-level devices
	4.1.4.1 DP slave data device

	4.1.5 Service-oriented high-level devices
	4.1.5.1 DP service device
	4.1.5.2 DP master slave acyclic device (DP/V1 device)
	4.1.5.3 FDL SAP device
	4.1.5.4 FMS Communication Reference (CR) device

	4.1.6 Access rights

	4.2 PROGRAM INTERFACES
	4.2.1 Data structures

	4.3 PROFIBUS WIN32 SYSTEM INTERFACE
	4.3.1 CreateFile
	4.3.2 CloseHandle
	4.3.3 GetLastError
	4.3.4 DeviceIoControl
	4.3.5 ReadFile
	4.3.6 ReadFileEx
	4.3.7 WriteFile
	4.3.8 WriteFileEx
	4.3.9 GetOverlappedResult
	4.3.10 SetFilePointer
	4.3.11 FileIOCompletionRoutine

	4.4 PROFIBUS APPLICATION PROGRAM INTERFACE
	4.4.1 Initialization and Shut down
	4.4.1.1 Init-Profibus
	4.4.1.2 Profi-Set-Default
	4.4.1.3 Profi-End

	4.4.2 Send / Receive Interface
	4.4.2.1 Profi-Snd-Req-Res
	4.4.2.2 Profi-Rcv-Con-Ind

	4.4.3 Data Interface
	4.4.3.1 Profi-Set-Data
	4.3.3.2 Profi-Get-Data
	4.3.3.4 Profi-Set-Dps-Input-Data
	4.4.3.5 Profi-Get-Dps-Input-Data
	4.4.3.6 Profi-Get-Dps-Output-Data

	4.4.4 Additional Interface Functions
	4.4.4.1 Profi-Get-Versions
	4.4.4.2 Profi-Get-Serial-Device-Number

	4.5 ENHANCED PROFIBUS APPLICATION PROGRAM INTERFACE
	4.5.1 Profi-Open-Basic-Management
	4.5.2 Profi-Open
	4.5.3 Profi-Close
	4.5.4 Profi-Write-Service
	4.5.5 Profi-Read-Service
	4.5.6 Profi-Read-Multi
	4.5.7 Profi-Write-Data
	4.5.8 Profi-Read-Data
	4.5.9 Profi-Get-Cntrl-Info
	4.5.10 Profi-Set-Timeout
	4.5.11 Profi-Get-Timeout
	4.5.12 Profi-Set-Queue-Size
	4.5.13 Profi-Get-Queue-Size
	4.5.14 Profi-Get-Overrun-Count

	4.6 INTERFACE RETURN VALUES

	BASIC MANAGEMENT
	CONTENTS
	1 SCOPE
	2 OVERVIEW
	3 FMB SERVICES
	3.1 FMB-Set-Configuration
	3.2 FMB-Set-Value Services
	3.2.1 FMB-Set-Busparameter
	3.2.2 FMB-Set-Value

	3.3 FMB-Read-Value Services
	3.3.1 FMB-Read-Busparameter
	3.3.2 FMB-Read-Value

	3.4 FMB-LSAP-Status
	3.5 FMB-Get-Live-List
	3.6 FMB-FM2-Event
	3.7 FMB-Reset
	3.8 FMB-Exit
	3.9 FMB-Exception

	4 CONFIGURATION PARAMETERS
	4.1 FMB Configuration
	4.1.1 VFD Configuration
	4.1.2 CRL Configuration
	4.1.2.1 Buffers for a Master-Master CR
	4.1.2.2 Buffers for Masters in Master-Slave CRs
	4.1.2.3 Buffers for Slaves in Master-Slave CRs
	4.1.2.4 Buffers for connectionless CRs

	4.1.3 DP Configuration
	4.1.4 FDLIF Configuration
	4.1.5 Standard Configuration
	4.2 FDL Bus Parameters
	4.2.1 Range of Values
	4.2.2 Recommended Bus Parameters for FMS Operation
	4.2.3 Recommended Bus Parameters for FMS Operation using ASPC2
	4.2.4 Recommended Bus Parameters for DP and FMS Operation
	4.2.5 Recommended Bus Parameters for DP Operation

	APPENDIX A
	STANDARD ERROR STRUCTURE AND ERROR CODES

	FMS SERVICES
	CONTENTS
	1 SCOPE
	2 OVERVIEW
	3 FMS CONTEXT MANAGEMENT SERVICES
	3.1 INITIATE
	3.2 ABORT
	3.3 REJECT

	4 VFD SUPPORT SERVICES
	4.1 LOCAL SERVICES
	4.1.1 Create-VFD
	4.1.2 VFD-Set-Physical-Status

	4.2 REMOTE SERVICES
	4.2.1 Status
	4.2.2 Unsolicited-Status
	4.2.3 Identify

	5 OD MANAGEMENT
	5.1 LOCAL SERVICES
	5.1.1 Loading an Object Dictionary
	5.1.1.1 Initiate-Load-OD-LOC
	5.1.1.2 Load-OD-LOC
	5.1.1.3 Terminate-Load-OD-LOC

	5.1.2 Reading an Object Description
	5.1.2.1 OD-Read

	5.2 REMOTE SERVICES
	5.2.1 Get-OD
	5.2.2 Put-OD Services
	5.2.2.1 Initiate-Put-OD
	5.2.2.2 Put-OD
	5.2.2.3 Terminate-Put-OD

	5.3 COMMUNICATION OBJECT STRUCTURE
	5.3.1 Objects in Local Object Dictionary
	5.3.2 PROFIBUS Object Description Transfer

	6 VARIABLE ACCESS
	6.1 READ
	6.2 WRITE
	6.3 READ-WITH-TYPE
	6.4 WRITE-WITH-TYPE
	6.5 INFORMATION-REPORT
	6.6 INFORMATION-REPORT-WITH-TYPE
	6.7 PHYSICAL-READ
	6.8 PHYSICAL-WRITE
	6.9 DEFINE-VARIABLE-LIST
	6.10 DELETE-VARIABLE-LIST
	6.11 VARIABLE-DATA-EVENT

	7 DOMAIN-MANAGEMENT SERVICES
	7.1 DOWNLOAD SERVICES
	7.1.1 Initiate-Download-Sequence
	7.1.2 Download-Segment
	7.1.3 Terminate-Download-Sequence
	7.1.4 Request-Domain-Download

	7.2 UPLOAD SERVICES
	7.2.1 Initiate-Upload-Sequence
	7.2.2 Upload-Segment
	7.2.3 Terminate-Upload-Sequence
	7.2.4 Request-Domain-Upload

	7.3 GENERIC-DOWNLOAD SERVICES
	7.3.1 Generic-Initiate-Download-Sequence
	7.3.2 Generic-Download-Segment
	7.3.3 Generic-Terminate-Download-Sequence

	8 PROGRAM-INVOCATION-MANAGEMENT SERVICES
	8.1 CREATE-PROGRAM-INVOCATION
	8.2 DELETE-PROGRAM-INVOCATION
	8.3 START-PROGRAM-INVOCATION
	8.4 STOP-PROGRAM-INVOCATION
	8.5 RESUME-PROGRAM-INVOCATION
	8.6 RESET-PROGRAM-INVOCATION
	8.7 KILL-PROGRAM-INVOCATION
	8.8 PI-SET-STATE-LOC

	9 EVENT-MANAGEMENT SERVICES
	9.1 EVENT-NOTIFICATION
	9.2 EVENT-NOTIFICATION-WITH-TYPE
	9.3 ACKNOWLEDGE-EVENT-NOTIFICATION
	9.4 ALTER-EVENT-CONDITION-MONITORING

	APPENDIX A
	ERROR STRUCTURE AND ERROR CODES
	INDEX

	FM7 SERVICES
	CONTENTS
	1 SCOPE
	2 OVERVIEW
	3 LOCAL FM7 SERVICES
	3.1 Set-Value-Loc Services
	3.1.1 Set-Busparameter
	3.1.2 Set-Value-Loc

	3.2 Read-Value-Loc Services
	3.2.1 Read-Busparameter
	3.2.2 Read-Value-Loc

	3.3 Loading the Communication Relationship List
	3.3.1 Initiate-Load-CRL-Loc
	3.3.2 Load-CRL-Loc
	3.3.3 Terminate-Load-CRL-Loc

	3.4 Read-CRL-Loc
	3.5 LSAP-Status-Loc
	3.6 Ident-Loc
	3.7 Get-Live-List
	3.8 FM7-Reset
	3.9 FM7-Event
	3.10 FM7-Exit

	4 REMOTE SERVICES
	4.1 FM7-Initiate
	4.2 FM7-Abort
	4.3 Load-CRL-Rem services
	4.3.1 Initiate-Load-CRL-Rem
	4.3.2 Load-CRL-Rem
	4.3.3 Terminate-Load-CRL-Rem

	4.4 Read-CRL-Rem
	4.5 Set-Value-Rem
	4.6 Read-Value-Rem
	4.7 LSAP-Status-Rem
	4.8 Ident-Rem

	5 FM7 CONFIGURATION / COMMUNICATION RELATIONSHIP LIST (CRL)
	5.1 CRL Header
	5.2 CRL Entry

	APPENDIX A
	ERROR STRUCTURE AND ERROR CODES
	INDEX

	DP SERVICES
	CONTENTS
	1 SCOPE
	2 OVERVIEW
	2.1 FEATURES
	2.2 CONCEPT

	3 FUNCTIONALITY
	3.1 ARCHITECTURE
	3.2 BASIC STATE MACHINE
	3.3 SOFTWARE CONFIGURATION
	3.4 DP MASTER PARAMETER SET
	3.5 DP SLAVE PARAMETER SETS
	3.6 DPRAM ADDRESS ASSIGNMENT MODES
	3.6.1 "ARRAY" Mode
	3.6.2 "USER DEFINED" Mode
	3.6.3 "COMPACT" Mode
	3.6.4 "IO-BLOCK" Mode

	3.7 LOCAL / REMOTE SERVICES

	4 SERVICE INTERFACE
	4.1 OVERVIEW
	4.2 INITIALIZATION / TERMINATION
	4.2.1 Init_Master
	4.2.2 Exit_Master

	4.3 DP MASTER (CLASS 1) SERVICE INTERFACE
	4.3.1 Upload_Loc / Download_Loc
	4.3.2 Start_Seq_Loc / End_Seq_Loc
	4.3.3 Act_Param_Loc
	4.3.4 Data_Transfer
	4.3.5 Get_Slave_Diag
	4.3.6 Set_Prm_Loc
	4.3.7 Get_Master_Diag_Loc
	4.3.8 Get_Slave_Param
	4.3.7 Set_Busparameter

	4.4 DP MASTER (CLASS 2) SERVICE INTERFACE
	4.4.1 Upload / Download
	4.4.2 Start_Seq / End_Seq
	4.4.3 Act_Para_Brct
	4.4.4 Act_Param
	4.4.5 Get_Master_Diag

	4.5 DDLM SERVICE INTERFACE
	4.5.1 Set_Prm
	4.5.2 Chk_Cfg
	4.5.3 Get_Cfg
	4.5.4 Slave_Diag
	4.5.5 RD_Inp / RD_Outp
	4.5.6 Data_Exchange
	4.5.7 Global_Control
	4.5.8 Set_Slave_Add

	5 DATA INTERFACE
	5.1 DP SLAVE I/O DATA ACCESS
	5.2 STATUS INFORMATION

	6.DP STATUS AND ERROR CODES
	6.1.CODING CONVENTIONS
	6.2.ERROR CODE DEFINITIONS
	6.2.1.Error Codes
	6.2.2.Error Code Extensions

	DP/V1 SERVICES
	CONTENTS
	1 SCOPE
	2 OVERVIEW
	3 DP/V1 INITIATE AND ABORT SERVICES
	3.1 DP_INITIATE
	3.2 DP_ABORT

	4 DP/V1 READ AND WRITE SERVICES
	4.1 DP_READ
	4.2 DP_WRITE

	5 NEGATIVE CONFIRMATIONS, ERROR- AND RETURN CODES
	5.1 NEGATIVE CONFIRMATIONS
	5.2 RETURN CODES

	FDL SERVICES
	CONTENTS
	1 SCOPE
	2 OVERVIEW
	3 FDLIF MANAGEMENT SERVICES
	3.1 FDLIF-Set-Busparameter
	3.2 FDLIF-Read-Busparameter
	3.3 FDLIF-Activate-SAP
	3.4 FDLIF-Activate-RSAP
	3.5 FDLIF-Change-SAP-Access
	3.6 FDLIF-Deactivate-SAP
	3.7 FDLIF-Event
	3.8 FDLIF-Exit

	4 FDLIF DATA TRANSFER SERVICES
	4.1 FDLIF-SDA (Send Data with Acknowledge)
	4.2 FDLIF-SDN (Send Data With No Acknowledge)
	4.3 FDLIF-SRD (Send and Request Data with reply)
	4.4 FDLIF-Reply-Update
	4.5 FDLIF-Reply-Update-Multiple

	APPENDIX A

	DP SLAVE SERVICES
	CONTENTS
	SCOPE
	ABOUT DPS
	DPS SERVICES
	Dps_Init_Slave
	Dps_Exit_Slave
	Dps_Get_Status
	Dps_Slave_Diag
	Dps_Chk_Cfg
	Dps_Set_Prm
	Dps_Set_Slave_Add

	TOOLS LIBRARY
	CONTENTS
	1 SCOPE
	2 BUS PARAMETER SETS
	2.1 GET DEFAULT BUS PARAMETERS
	2.2 TABLES OF DEFAULT BUS PARAMETER SETS
	2.2.1 Recommended Bus Parameters for FMS/FM7 Operation using ASPC2
	2.2.2 Recommended Bus Parameters for simultaneous DP / FMS Operation
	2.2.3 Recommended Bus Parameters for DP Operation

	3 COMMUNICATION RELATIONSHIP LIST RESOURCES
	3.1 RESOURCES INIT
	3.2 RESOURCES ADD ENTRY

